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1. Introduction

Winter faba bean (Vicia faba L.) is sown in autumn, mainly in
regions with mild winters north of the Pyrenees and Alps, and
survives the winter as young plants with two to three leaves and a
short shoot. In France, some 11 000 ha of winter faba bean was
grown in 2006 (about 15% of the total area sown to faba bean) and
in the UK, over 160 000 hectares of faba bean have been sown each
year since 2001, of which about half is winter cultivars (data from
DEFRA, UK). In Germany and further east in Europe, where harsher
winters prevail, no winter faba bean is grown at present. Field trials
in Germany in the 1970s and 1980s showed that the climate was
not suitable for existing winter faba bean cultivars (von Kittlitz,
1974; Hauser and Böhm, 1984; Herzog, 1989b). Nevertheless,
there is potential for expanding the range of winter faba bean
through breeding for improved hardiness, particularly in the
presence of climatic warming.

As a result of its head start, winter faba bean generally flowers
and matures earlier than the spring type. An important feature is

its capacity to develop two or more rather synchronous til
whereas spring bean seldom tillers. Young winter faba bean pla
show a considerable capacity for regrowth and healing
mechanical injury. Sowing rate is lower than in the spring t
(20–30 rather than 35–60 seeds per m2). The yield superiorit
winter over spring faba bean was 14% in trials in Germany betw
1981 and 1989 (Herzog and Geisler, 1991) and 47% in 2004 ac
three locations in UK (Table 1).

There are not many winter faba bean cultivars on the mar
Some are well-tried, like Clipper, Hiverna, Irena, Karl, Olan, Pu
and Target; others were recently released like Arthur, Diver
Gladice. Gladice is the only recent tannin-free winter faba b
cultivar and there is no low-vicine winter cultivar yet on
market. Only three companies are active in this field, Wherry
Sons (UK), Agri-Obtentions (France) and NPZ Lembke (Germa

Bond and Crofton (1999) summarized the history of Europ
winter faba bean. Small-seeded winter types named ‘‘Russian’’
‘‘Little Winter’’ were introduced to the UK in 1825 from unkno
sources. All winter beans in the 1800s were small-seeded m

types and the medium-seeded equina types replaced th
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A B S T R A C T

Winter types of faba bean (Vicia faba L.) have existed for at least 200 years. Their superior use of

growing season confers strong yield advantages over spring beans. Nevertheless, yield increases h

been slower than in many other crops. There are few sources of winter hardiness and efforts ar

progress to combine favourable alleles from accessions such as Cote D’Or and BPL 4628 to increase

crop’s tolerance to frost. Vernalization requirements are quantitative, as vernalization hastens flowe

rather than allowing it. Hardening is associated with increases in fatty acid desaturation of memb

lipids and increases in content of soluble osmoprotectants such as proline. Other osmotically ac

factors such as glycinebetaine, trehalose and antifreeze proteins have not yet been reported for faba b

Frost tolerance increases after hardening and shows good heritability (h2 = 0.89). Three Q

(3.6 < LOD < 4.6) have been identified for frost tolerance (explaining 8.6% of the phenotypic variat

and further QTLs for hardening response and cell membrane fatty acid composition. Information

responsive genes and the mode of their action is increasingly available from model plant species but m

remains as yet untested in faba bean. There is clear potential for increasing the winter hardiness and y

of winter faba bean so it can be grown in a wider area than at present.
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between 1925 and 1945. The only minor winter bean prese
known is the old French population Côte d’Or. Faba bean was
second most important crop in the UK at the end of the 1
century, with more than 220 000 ha grown in 1873, about
s in faba bean: Physiology and breeding. Field Crops Res. (2008),
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g winter type. The ‘‘Russian’’ type was even recommended for
land, hence it may have been truly winter-hardy. Picard et al.
5) reported that winter faba bean types like Côte d’Or were
n already in 1812 in remarkable amounts in the continental

ate and at high altitude in the Côte d’Or region of Burgundy. In
ich, Kreutz (1930) conducted a long-lasting selection program
inter faba bean, apparently starting with spring types that

ived winters. The resulting types were described as small-
ed and short, showing a restricted height as young plants, with
ong tendency to tiller and small leaflets.
hree germplasm pools are currently used for breeding winter
bean: (1) that from PBI Cambridge (Bond et al., 1986) and now
led by Wherry & Sons in the UK; (2) that at Agri-Obtentions,

ce, mainly resulting from prior programs at Rennes (Berthe-
, 1970) and Dijon; and (3) the material developed by Littmann
mmdorf, studied by Herzog at Berlin and now handled by NPZ
bke and the University of Göttingen. The Littmann material
said to contain genotypes originating from the Pyrenees (Bond
Crofton, 1999). Little further winter-hardy material is available

gene banks. At Göttingen, breeding research on winter faba
has continued since 1988.

utumn sowing of faba bean is traditional in the Mediterranean
n and similar climates. These cultivars endure mild frosts
ut �6 8C) in southern Europe (e.g., cvs. Aquadulce, Enantia,
ca and Alameda) or grow in very mild winters in North Africa
, cvs. Chahbi, Giza 843 and Hudeiba 93). A main feature is their

early flowering and maturity, escaping the usual terminal
ght of these semi-arid climates. These types of faba bean are
n also in Australia (e.g., cvs. Icarus, Farah and Mannafest)

re breeding programs are in progress (Paull et al., 2006).
inter faba bean offers several advantages over the spring type.

akes better use of moisture available in winter and especially in
y spring, it partly escapes summer drought, and it tends to
ure in August when conditions are favourably warmer and
r. It partly escapes Sitona weevil and aphid attacks because it is

ady further developed and less sensitive than spring bean
n the insects are most numerous and active (young plant and
ering, respectively). Autumn sowing avoids problems of damp

ng soils impeding sowing, and in turn spring sowing allows a
crop to be produced when autumn planting conditions have

before winter bean, but then the yield margin is even more in
favour of the winter type. Since very few breeders work with this
material, the general breeding progress is slow. As with other
winter crops, it is hard to see how the growing season can
effectively be brought under 6 months to allow two cycles per year.
Winter faba bean sown at Göttingen in March and April matured
on time in August or September, but with low yield and no
opportunity for selection for winter traits, while glasshouse-grown
plants matured too late in spite of seed and plant vernalization.

2. Breeding of winter bean

Faba bean cultivars are either lines or populations, and in the
latter case these are often synthetic cultivars (Link and Ederer,
1993). The instability of the available systems of cytoplasmic-
genic pollen sterility precludes commercial-scale production of
true hybrid cultivars. Breeding of faba bean is hampered by its
partial allogamy (about 50% with large variation). Pollinators are
bumblebees, honeybees and other solitary bees (see companion
paper in this issue). Heterosis for grain yield is strong, mostly
>30%. There is even heterosis for a very specific trait:
autofertility, the ability to self-pollinate spontaneously, i.e.,
without the need for visits from pollinators (Drayner, 1959; Link,
2006). Winter bean flowers rather early in the season, and
autofertility might be of especial importance for yield when
pollinator activity is limited (Stoddard, 1986) Q. Since there is
heterosis for general vigour and winter hardiness (see below),
there seem to be more arguments in favour of maximizing
heterosis in winter than in spring faba bean.

A crucial step in bean breeding is testing of inbred lines, yet
production of selfed seed is a bottle-neck. In an open field, seed
production is economical but may suffer from contamination with
cross-pollen. In pollinator-excluding cages, controlled selfing can
be enforced, but seed setting is poor without pollinator visits so
technical staff are needed to trip flowers manually at a relatively
high cost.

A consequence for faba bean breeding is that with the
minimum possible number of seeds per inbred line, the maximum
amount of information on its genetic value has to be gathered. One
step (but not two consecutive steps) of cheap open field
propagation seems to be adequate and tolerable (Link, 1995).
Here, winter bean has a clear advantage. A single winter bean
plant in low plant density may yield more than 75 seeds, enough
to sow 3 m2 of a field test. Thus, as few as 10 plants of an inbred
line, sown to propagate in an open field, e.g. as topcross or
polycross, will produce enough seed for a 30 m2 field test of its
offspring; this allows a reasonable test in two locations. In spring
bean, 10 such plants may yield seed for only about 10 m2, scarcely
enough for a single location test.

The most important objectives of winter faba bean breeding
that differ from those of spring bean breeding are resistance and
tolerance to frost stress and to winter-specific pathogens. In detail
these are:

� appropriate vernalization requirement;
� adequate hardening and dehardening behaviour;
� frost tolerance without hardening and after hardening;
� frost tolerance after dehardening;
� tolerance of continuous snow-cover;

1
yield (t ha�1) in 2004 in England from winter and spring faba beans

Locations

Bramham Poringland Thornaugh

var (winter bean)

get 5.05 3.91 3.72

pper 4.72 3.83 3.52

zard 4.39 4.11 4.25

4.17

var (spring bean)

tor 1.88 2.85 2.67

li 2.43 3.20 3.76

pass 2.38 2.65 3.27

cro 2.38 2.94 3.53

2.83

from NIAB, UK.
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poor. The main disadvantage of winter faba bean is the risk of
ter-kill. A further drawback is the more traditional growth
t of this material: rather tall, low in harvest index, and prone to
ing. Although the material is vigorous, less breeding progress
arliness of flowering and maturity has been made than in

ng types. In a dry warm year, spring bean may even mature
ase cite this article in press as: Link, W., et al., Winter hardine
i:10.1016/j.fcr.2008.08.004
� tolerance of frost-drought (desiccation from wind and solar
radiation under frost);
� tolerance of high moisture levels in soil in winter;
� endurance of mechanical soil movement due to cycles of frost

and thawing, referring especially to root morphology and tensile
strength;
ss in faba bean: Physiology and breeding. Field Crops Res. (2008),
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� resistance against diseases that attack specifically in winter and
early spring.

With the exceptions of frost tolerance and disease resistance,
these are seldom handled individually, but they are implicitly
tested in field trials.

3. Vernalization

Two important, specific features of winter crops are vernaliza-
tion and hardening. These two processes have partial but not
complete independence, as shown by Lee et al. (2001) who
described the gene HOS1 (high expression in response to stress)
that had a large impact on both in Arabidopsis thaliana L. They occur
in parallel at low positive temperatures but the outcomes are
different. There appears to be no correlation between vernalization
requirement and frost hardening ability of faba bean (Soja and
Steineck, 1986).

The major purpose of a vernalization requirement is to prevent
flowering in late autumn and postpone it until spring. A short cold
period after emergence in autumn followed by temporary warm
weather should not induce flower bud formation. Thus, a winter
crop should achieve a vernalized status only after exposure to a
sufficiently extended period of cold. An additional effect of long
days is a very valuable insurance against onset of flowers in
autumn. Winter bean indeed responds to vernalization (at about
4 8C) but unvernalized plants eventually flower on a higher node.
The vernalization requirement of winter bean is about 30 days.
Temperatures above 23 8C inhibit flowering, especially if at night.
Seeds can also be vernalized by cool temperatures. After
vernalization, more genotypes showed a significant positive
response (enhancement of flowering) to long day photoperiod
than without (Evans, 1959; Soja and Steineck, 1986; Ellis et al.,
1988; Fujime et al., 2000). Among Mediterranean, North African
and European spring faba bean types the response to an exposure
to low temperatures varied from nil to a marked acceleration of
flowering and quantitative genotypic differences were shown (Soja
and Steineck, 1986). In winter types of pea (Pisum sativum L.), the
most important major locus for winter frost resistance co-
segregated with the allele for delayed flowering (Hr; Lejeune-
Henaut et al., 2004), showing the importance of appropriate (i.e.,
late) flowering time for winter pea. Referring to winter faba bean,
only one comment on this topic was found in the literature. The
vernalization requirements of most winter beans are probably
adequate. Japanese cultivars with susceptibility to prolonged snow
cover developed flower buds before winter, whereas snow-
tolerant cultivars (Rinrei, Mairudo Green) differentiated their
flowers much later (Fukuta and Yukawa, 1998). The molecular
analysis of FLC, a major vernalization gene in Arabidopsis, provided
clues about metabolic details of vernalization (Sung and Amasino,
2005) that may be confirmed in legumes.

4. Hardening

As for vernalization, the hardening responses of the winter and
spring germplasm pools of faba bean are not clearly separate.
Spring faba bean is able to acquire some winter hardiness, it
survives Mediterranean winters (Schill et al., 1998) and has
repeatedly survived mild winters in Germany (Herzog, 1989b).

temperatures resulted in similar rates of hardening and maxim
frost tolerance. Since dehardening commences above 7 8C,
very strongly so above 10 8C, a temperature of 2–5 8C accompan
by short days (10 h; Herzog, 1988) is adequate for hardening.
genetic distinctness of the frost tolerance response of harde
plants and that of plants without hardening treatment has b
demonstrated in Arabidopsis (Thomashow, 1990) and in Solan

(Stone et al., 1993). The correlation between hardened and n
hardened frost tolerance responses of winter faba bean was o
moderate (r = 0.59; r = 0.54; Arbaoui, 2007) and this confirm
least partial independence of these traits.

Hardening results in modifications of the plant cell membr
including changes in the lipid-to-protein ratio and membrane l
unsaturation (Hughes and Dunn, 1996; Uemura et al., 20
Arbaoui and Link (in press) found altered desaturation of faba b
leaf lipids in response to cold hardening, including a signific
decrease in oleic acid content and a significant mean increas
linolenic acid (in leaves from 51% to 57% and in stem from 32
41%), resulting in weak to moderate correlations with f
tolerance. The association of increased desaturation w
decreased temperature also exists at higher temperatures, a
decrease in cultivation temperature from 30 8C to 20 8C resulte
a desaturation of the major fatty acids in faba bean leaves, ma
of 18:2 to 18:3 (Lem et al., 1980).

Further hardening-induced changes in lipid composition
other species have yet to be tested in faba bean. In Arabidopsis,
lipid composition of the plasma membrane changed significa
due to hardening, as the proportion of di-unsaturated specie
phosphatidylcholine and phosphatidylethanolamine rose and
proportion of phospholipids in total lipids increased (Park
Chen, 2006). Collins et al. (2002) found a significantly higher le
of unsaturated fatty acids in white clover genotypes that surviv
frost test than in the unselected population. Fatty acid desatur
(fad) mutants of Arabidopsis, deficient in the production
polyunsaturated fatty acids, partly within the chloroplasts, w
killed by low temperatures, unlike wild types (Hughes and Du
1996). Phospholipase D was involved in lipid hydrolysis
freezing tolerance of Arabidopsis, and phospholipase a1
phospholipase d were involved in post-freezing recovery
et al., 2008).

5. Frost stress

The winter 2002/2003 was the most recent one that was
severe at Göttingen for almost all winter beans (less than
survival). Four spells of harsh frost (below �10 8C) occurred,
lowest temperature of�16 8C coming during a period of five nig
with frost below �10 8C and strong frost throughout the d
Snow cover was <1 cm and 6–7 h of sunshine per day toget
with a dry wind from the east caused high evaporation, i.e., sev
frost-drought. The winter 2004/2005 with only one such spell
single night at �17 8C and a snow cover of 7 cm barely cau
winter-kill except among spring bean types.

The physiological changes resulting from hardening include
increase in the content of highly soluble compounds ca
compatible solutes or osmoprotectants that accumulate with
disturbing metabolism and protect against dehydration. Exam
are proline, glycinebetaine and related compounds, mann
sucrose, raffinose, stachyose, and specific proteins.

W. Link et al. / Field Crops Research xxx (2008) xxx–xxx
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Faba bean shows increased frost hardiness already after a few days
of exposure to low non-freezing temperature and a maximum
status of hardening is reached in 2–3 weeks (Herzog, 1988).
Hardening involves energy-demanding physiological processes,
thus requiring appropriate light quality and intensity (200–
400 mmol m�2 s�1). Experiments with 5–8 8C day and 2 8C night
Please cite this article in press as: Link, W., et al., Winter hardines
doi:10.1016/j.fcr.2008.08.004
Proline accumulation during hardening is correlated with g
in frost tolerance in many species, e.g., wheat (Dörffling et
1990) and barley (Dobslaw and Bielka, 1988) and rece
demonstrated in faba bean (Arbaoui et al., 2008). In wheat,
rate of change of the two traits with time was not equal (Windt
van Hasselt, 1999), and in faba bean maximum proline accum
s in faba bean: Physiology and breeding. Field Crops Res. (2008),
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occurred before maximum frost tolerance (Balko, unpublished
) suggesting that proline accumulation was a precondition for
ening, but not the sole cause. Sánchez et al. (2004) doubted
ther the main effect of proline accumulation in pea was a
ct osmotic contribution, since it was not clear whether its
mulation was primarily in the cytosol or in the organelles. Xin
Browse (1998) demonstrated a positive role for proline in

zing tolerance with an Arabidopsis mutant that accumulated
old more proline. Nanjo et al. (1999) corroborated this with an
sense construct in Arabidopsis that reduced proline hydrolysis,
le Konstantinova et al. (2002) found increased freezing
rance in transgenic tobacco that accumulated proline.
he role of glycinebetaine in osmotic stress in cool-season
mes has not been demonstrated positively or negatively
iewed by Stoddard et al., 2006). Glycinebetaine has been

n to occur in Medicago truncatula cv. Jemalong and not to
r in Medicago sativa cv. Hunter River, while Lotus sp.
mulated prolinebetaine instead of glycinebetaine (Naidu

l., 1992; Rhodes and Hanson, 1993). Transgenic tomato that
uced glycinebetaine was more tolerant to cold than the wild
, showing the usefulness of glycinebetaine in improving cold-

ss tolerance (Park et al., 2003). Proline and glycinebetaine
ication by spraying improved the tolerance and membrane
ility of salt-stressed faba beans (Gadallah, 1999).
ardening also affects carbohydrate metabolism. Bourion et al.
3) found a close relationship between the soluble sugar
entration of leaves just before the frost event and the degree of

zing tolerance in spring and winter peas. In a range of legume
ies, including Vicia sp., the concentration of sugars in the root
negatively correlated to the level of frost damage (Ratinam
., 1994). Antisense expression of a tomato late embryogenesis
dant galactosidase (LEA-GAL) gene resulted in a manifold

ease in the level of raffinose along with a markedly increased
rance towards frost of non-acclimated and cold acclimated
nia plants (Pennycooke et al., 2003). Trehalose is a carbohy-
e that plays an important role as an abiotic stress protectant,
ilizing dehydrated enzymes and membranes. When Lotus

nicus, a legume model species, was treated with a trehalase
bitor so that trehalose accumulation increased five-fold during
stress, the plants produced 20% more biomass than without the
bitor (López et al., 2006).

ther stresses: diseases, snow cover and waterlogging

he phenology of European winter bean enhances its exposure
rtain diseases that are less common in spring bean. Ascochyta

e is primarily a disease of winter bean and at Göttingen, winter
is also frequently damaged early in spring by Fusarium

porum. It cannot be ruled out that further fungi are involved in
y spring root rots of winter bean. Four major genetic loci for
chyta resistance have been marked with RAPD from two
ses, each locus explaining about 20% of the genotypic
ation; one important source of resistance is the spring bean
29H (Román et al., 2003; Avila et al., 2004). Genetic differences
Ascochyta resistance are as well known for winter bean
ivars; e.g., the UK cv. Target and the French cv. Irena are
rtedly resistant. There is no evidence to link disease or pest
tance in winter bean with the two key antinutritional factors,
in and vicine-convicine. In spring bean, however, zero tannin

plasm pool and Rinrei is a dwarf mutation bred by radiation
mutagenesis. Tolerant varieties were short in height, with
prostrate growth habit, short internodes and petioles, small leaves
that touched the soil and a high content and maintenance of non-
structural carbohydrate in the plant tissue. This phenotype
apparently reduced wounding risk from graupel fall and strong
wind before snow coverage and increased resistance to snow
mould (Pythium iwayamai, Sclerotinia trifoliorum; Fukuta and
Yukawa, 1999; Fukuta et al., 2000; Fukuta et al., 2001). Similarly,
Bond and Crofton (1999) reported on the development of the
winter cv. Deneb from a plant that had survived the hard winter of
1947 in the UK. Deneb showed evidence of greater hardiness with
smaller, darker green leaves and a more prostrate habit when
tested in official trials. Essentially the same ideotype was described
by Annicchiarico and Iannucci (2007) by calculating the ratio of
plant height to number of leaves, with a favourable effect of a
stunted, rosette-like habit. This relationship was identified only by
calculating a partial correlation coefficient between this ratio and
winter survival (r = 0.47; P < 0.05). The correlative impact of sown
seed weight (large sown seed showed low winter survival and
large young plants) was thus eliminated. Bond and Crofton (1999)
also speculated about a general association between small-
seededness and winter hardiness in grain legumes.

In South China, excess water in autumn-sown bean was
reported to be common (Bond et al., 1994). Since waterlogging is
one of the typical stresses of over-wintering crops in Northern
latitudes, the material from South China should be investigated for
possible resistance. Resistance against Fusarium sp. may also be
connected to this aspect.

7. Field trials to assess winter hardiness

Series of field trials are the usual approach to investigate winter
hardiness. They allow the ultimate validation of data since they
show the agronomic reality. They are, however, very time-
consuming, as often winters are either too mild or too hard
instead of giving a good differentiation between genotypes. If the
climatic diversity included is large, the probability of having a
location with appropriate winter strength included increases.
Nevertheless, genotype � environment interactions increase as
well (Arbaoui, 2007; Arbaoui et al., 2008) probably because of the
different relative importance of frost, waterlogging and the other
components of winter survival. A good recommendation is to have
two sowing dates with 2–4 weeks difference, to increase the
probability of a good discrimination. A number of known checks
with a spread of winter hardiness should be included. The locations
should vary across years, to cover as many environments as
possible.

8. Assessing frost tolerance

In addition to field trials and often even as an alternative,
controlled frost tests are conducted. Several researchers have used
plants in pots in a plant growth chamber, whereas others have
conducted tests with detached leaves. A traditional method to
assess frost tolerance is to grow winter beans in wooden boxes
outdoors (Fig. 1) to expose them to winter weather. Any natural,
protecting snow cover may be withheld. If necessary, the frost
period may be shortened by moving the boxes inside. This
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correlated with susceptibility to Fusarium sp. at emergence
d et al., 1994).
ukuta and Yukawa (1998) tested 41 bean cultivars for
rance to long snow coverage (36 and 61 days) without severe
t. They identified Mairudo Green and Rinrei as outstandingly

cover-tolerant genotypes; both were from the same germ-
ase cite this article in press as: Link, W., et al., Winter hardine
i:10.1016/j.fcr.2008.08.004
approach has repeatedly allowed corroboration of known differ-
ences in winter hardiness (Balko, 2007, unpublished) and hence
can be used to test novel material.

The first symptom caused by freezing temperatures, visible
already while the frost holds, is a dry blackening of the tips and
edges of leaflets. After thawing, leaflets and stems may become at
ss in faba bean: Physiology and breeding. Field Crops Res. (2008),
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first yellow to greyish and later black, they lose turgor (wilt), and
especially the stems may develop a water-soaked, semi-translu-
cent, crinkled appearance, later turning black as well. Even plants
with no immediate symptoms may develop frost injury symptoms
after several days of recovery. At first invisible since they are below
the soil surface, roots and epicotyls may rot and become black,
even though the plants at first show little wilting. The black zone
extends upwards along the stem until the whole plant is dead.

In southern China, faba bean flowering in February regularly
has to endure 3–4 weeks with frost, partly lower than�2 8C, and it
was reported that flowers were tolerant to very mild frost, whereas
young pods were not (Liu et al., 1987). In South Australia, however,
a fraction of a degree of frost was enough to kill ovules within
unfertilized flowers of cv. Fiord, leading to random growth of
pollen tubes within the ovaries (Stoddard, unpublished observa-
tions, 1987).

Duc and Petitjean (1995) and Arbaoui et al. (2008); (Fig. 2)
found that the results of artificial frost tests corroborated field data
for overwintering and winter hardiness. Heritability in the data set
of Arbaoui et al. (2008) was h2 = 0.83 for grain yield and h2 = 0.90
for overwintering. These two traits were correlated with r = 0.83
(P < 0.01), whereas r = 0.41 (P < 0.05) was the relationship
between frost tolerance and overwintering (Fig. 2). Frost tolerance
is apparently a major component of the winter hardiness of winter
faba bean. Under artificial conditions, European winter bean
cultivars like Côte d’Or and Hiverna are tolerant to temperatures
down to �15 to �16 8C if adequately hardened (Herzog, 1987,
1989b). As reported by Picard et al. (1985), 61% of Côte d’Or plants
survived even �25 8C in the field without snow-cover.

Gehriger and Vullioud (1982) used potted young plants for frost
tests. Hardening of 34 days at 5 8C in the greenhouse was followed
by testing. Their slow approach to the ultimate test temperature
took 5 days from +5 8C to �3 8C, and thereafter frost increased by
3 8C per day until the test temperature was reached (between
�6 8C and �15 8C). Duc and Petitjean (1995) allowed 3 weeks of
hardening to young potted plants. Actual testing was a 3 weeks

night, with 4 h of frost, starting at�8 8C and culminating at�2
at which all plants were killed. After each step, injury, discolora
and loss of turgor were visually scored on leaves and stems and
scores were combined across the entire procedure. High he
abilities were achieved (h2 = 0.89), although a large experim
was required (36 plants per genotype; Arbaoui et al., 2008). T
work is continuing, in order to allow the detection of sm
statistically significant differences in frost tolerance betw
highly frost-tolerant genotypes.

Fig. 1. An example of the difference in growth type and over-wintering behaviour of the winter bean Hiverna and the spring bean BB686 in provocation boxes in 2004 (B

unpublished).

Fig. 2. Relationship between (1) frost injury (area under symptom progress cu

(2) electrolyte leakage (i.e., membrane stability index, MSI); and (3) over-winte

(visual score, 1 = total winter-kill; 12 European environments; Spearman

correlation coefficients are displayed). The three spring bean accessions

identified by closed stars near the bases of the back walls. Two-dimens

relationships – between overwintering and MSI (open boxes) and betw

W. Link et al. / Field Crops Research xxx (2008) xxx–xxx
overwintering and frost injury (grey boxes) – are additionally displayed as

projections of the data onto the two back walls. The winter bean Bulldog/1 (high

over-wintering score, relatively high frost injury score and low MSI) is identified by

open stars near the tops of the back walls, and the non-adapted, exotic line BPL4628

(lower frost injury score and higher MSI but very low over-wintering score) is

shown also as open stars, near the bases of the back walls. The three entries with

best over-wintering, visible as the top set of three points were Hiverna, Karl and the

Winter Bean Population at Göttingen (Arbaoui, 2007; Arbaoui et al., 2008).
course of daily freeze–thaw cycles, with aggravating frost from 0 to
�6 8C; thawing temperature was 3.5 8C, and day length was 9 h.
They assessed leaf frost injury visually following Herzog’s (1987)
method. Arbaoui and Link (2007, in press) also assessed frost
tolerance with young potted plants after 2–3 weeks of hardening.
The test comprised six steps of aggravating frost, one step per
Please cite this article in press as: Link, W., et al., Winter hardiness in faba bean: Physiology and breeding. Field Crops Res. (2008),
doi:10.1016/j.fcr.2008.08.004
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erzog (1987) developed an approach using detached leaves
hardened faba bean plants. The leaves were artificially frozen
injury was assessed by visual rating and by conductivity

surements (Flint et al., 1967). Freezing damages cell mem-
es; they may actually rupture and cell content may escape.
t tissue, when placed in water, can be assessed for damage by
suring this leakage via electrical conductivity tests of the water
ate mixture. A regression equation was established to estimate

test temperature T50 that induced a mean injury (score 4 on a
e from 0 to 8), provided that a test temperature in the vicinity
50 was applied. This equation was based on the finding that a
of 1 8C in freezing temperature caused about 2.5 units increase

rost injury on this scale. Interestingly, unhardened leaves
ed to be either barely or highly injured, showing a binomial or
itative response, whereas hardened leaves exhibited all levels
termediate injury, i.e., a quantitative response. Arbaoui et al.
8) found the correlation of frost tolerance with electrolyte
age to be somewhat higher (r = 0.68) than that with proline
mulation (r = 0.58) and that with changes in leaf fatty acid
position (r = 0.48), although all three coefficients were highly
ificant (P < 0.05; Fig. 2 and see below).
hotosynthesis is affected by freezing stress in general and
ifically by membrane damage (Ensminger et al., 2006).
ewski (1996) and Herzog and Olszewski (1998) applied the
rophyll-fluorescence method to assess frost resistance of faba
, barley, oats and oilseed rape. The crucial trait was the ratio Fv

ore frost) / Fv (after frost). This technique was reliable only
r a thorough phase of establishment and when all steps were
well standardized. For faba bean screening, this method when

pared to a visual scoring of frost injury needed more labour
rs, but was free of observer bias. Expenditure for apparatus and
get were higher, but the procedure could be partly automated.
two approaches did not differ in either reproducibility or
itivity. Even though this approach was not more efficient and
rate than visual scoring in faba bean, in the other crops it was.
mann-Bahnsen and Herzog (2001) used this chlorophyll-
rescence method to identify frost-tolerant Lupinus albus types.

found Hiverna faba bean to be more frost-tolerant (by about
) than the most tolerant lupins, which were tolerant to a range
�9 to �11 8C.

nly very few reports present comparisons of these approaches.
available data do not yet allow a decision on which approach to
mmend to practical breeding or to breeding research.

hysiological damage due to freezing

enerally, when plant shoots freeze, water moves from the cells
e intercellular space, and at�10 8C this amounts to more than
of the osmotically active water (Thomashow, 1998). The cause
e growth of ice crystals in the intercellular spaces of the
es. The plant cells correspondingly suffer from dehydration.

hermore, the ice crystals may disrupt the cell membranes.
n the tissue thaws, the protoplast leaks cell contents and
her) loses turgor.
lants have a number of strategies to survive freezing
peratures. The ability to avoid ice formation within the tissue
h intercellular spaces and intracellular) and hence to avoid the
lting dehydration of cells (Thomashow, 2001) is of major
ortance. One strategy is the depression of the freezing point by

Larcher, 1987; Reyes-Dı́az et al., 2006), but this has not yet been
reported in any Vicia species.

Frost tolerance includes processes that allow ice to form in
plant tissues – mainly in the intercellular spaces or special
compartments – and the resulting dehydration of cells without
lethal consequences (Nilsen and Orcutt, 1996). In frost-tolerant
genotypes, intercellular ice formation seems to be controlled and
modified by antifreeze proteins. Intracellular ice formation,
however, is generally lethal (for reviews see Uemura et al.,
2006; Margesin et al., 2007).

Griffith and Yaish (2004) reviewed ‘‘antifreeze proteins’’ and
their role in overwintering plants. Their physiological function is
likely in inhibiting the intercellular recrystallization (growth) of
ice rather than in altogether preventing this ice formation and they
may additionally stabilize membranes, preventing damage by ice.
They may further work in conjunction with volunteer protein ice
nucleators to channel ice crystallization. Plant antifreeze proteins
are homologous to pathogenesis-related proteins. In winter rye,
antifreeze proteins exhibited antifungal activity in addition to their
hydrolytic and ice-binding role. Antifreeze proteins have been
identified in some forage legumes (Avice et al., 2003 and references
in Griffith and Yaish, 2004) but not yet in any grain legumes. The
existence and activity of osmoprotective substances in faba bean
needs further investigation.

10. Availability of genetic variation

Winter faba bean breeders are faced with Côte d’Or being
apparently a sole, outstanding source for frost tolerance and winter
hardiness (although not for disease resistance). Thus, genotypes
are sought with (1) higher frost tolerance than Côte d’Or; or (2)
similar frost tolerance due to complementary genes to those found
in Côte d’Or. Mutagenesis, interspecific crosses and genetic
transformation are alternative ways by which to release additional
variation, yet, none of these seems to attract the due attention of
breeders and researchers (see below).

Several lines inbred from Côte d’Or are available, and there
seems to be genetic variation among them. Further useful sources
of hardiness are the cvs. Hiverna, Webo, Wibo, Karl and Diva, and
the current Winter Bean Population at Göttingen. An exotic, rather
frost-tolerant genotype is BPL4628, an ICARDA accession from
China (Duc and Petitjean, 1995; Arbaoui et al., 2008). The inbred
line (Côte d’Or/1 � BPL4328)-95 performed well (Arbaoui et al., in
press).

The following genotypes out of 208 accessions showed superior
frost resistance (values rounded off): Côte d’ Or (�16 8C), Hiverna
(�15 8C), the lines ILB3187 (Cixi Dabaican), ILB2999 (PAK-40841),
ILB14 (Aleppo), ILB345 (Egypt; all �14 8C; Olszewski, 1996).
Further promising accessions for winter hardiness and frost
tolerance should be sought in the mountainous regions of Western
and Central Asia like the Hindu Kush; material from these regions
frequently showed frost tolerance, probably due to being adapted
to a high risk of frost early in the vegetative phase (Olszewski,
1996).

In spite of all known winter beans belonging to minor and
equina types, recently Bond has developed two rather winter-
hardy major type lines (Bond 64621, Bond 3353; D.A. Bond,
personal communication, 2007).

Accessions of Vicia johannis and Vicia narbonensis were found to
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otic adaptation of cells (Nilsen and Orcutt, 1996) and thus the
mulation of a range of osmotically active (i.e. cryoprotective)
tances is widespread. This can be observed during the
ening process. A further strategy to avoid ice formation is
rcooling, the ice-nucleation-related ability of tissues to cool
w the freezing point without actual ice formation (Sakai and
ase cite this article in press as: Link, W., et al., Winter hardine
i:10.1016/j.fcr.2008.08.004
show superior tolerance to frost (Birch et al., 1985). Since
interspecific crosses between V. faba and other species of the
genus have not yet been successful (Wijaya, 2003), this genetic
variation is unlikely to be transferable to V. faba in the near future.

Correlation studies are an important source of relevant data for
breeding. Herzog (1978) reported that chlorophyll content and the
ss in faba bean: Physiology and breeding. Field Crops Res. (2008),
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chlorophyll A:B ratio did not seem to be promising criteria. Yet,
high dry matter content per area of leaf seemed to be indicative for
winter beans and for successful hardening. In a study with 10
genotypes of diverse origin, including Côte d’Or and Aquadulce,
Herzog and Saxena (1988) found more than 83% of the variation in
frost tolerance of detached leaves to be explained by four traits,
expressed by hardened young plants: low relative water content,
slow plant development, short plant height, and small leaf area.
This combination essentially corroborates the one mentioned
earlier for field-based over-wintering.

11. Heterosis

Heterosis for frost tolerance and winter hardiness is of interest
because it can be exploited in synthetic cultivars (Gehriger and
Vullioud, 1982; Bond and Crofton, 1999; Ghaouti et al., in press). In
the Arabidopsis cross Columbia-0-G1 � C24-G1, the parental mean
of the LT50 (50% of maximum electrolyte leakage) was �7.8 8C,
whereas for the average of the reciprocal F1 hybrids it was
�10.3 8C, a highly significant difference. The leaf contents of
soluble sugars (fructose, glucose, sucrose and raffinose) were
dramatically higher in the F1 plants after cold acclimation than in
the parental lines, while the content of proline was only
moderately higher. Correlation analyses showed that only
raffinose content was consistently related to leaf-freezing toler-
ance. The expression of cold-related genes like COR78 (see below)
was seemingly not involved in the expression of this heterosis
(Rohde et al., 2004).

Two diallel tests showed that frost tolerance in faba bean under
artificial conditions (potted plants) followed a quantitative genetic
model (Duc and Petitjean, 1995). They authors found high
favourable heterosis and high heritability, and concluded that
the favourable alleles for frost in the line 285 derived from Côte
d’Or were dominant over susceptibility. They recommended the
cross between this line and the line BPL4628 from China (ICARDA
catalogue). In this cross and others, Arbaoui and Link (2007) found
between 0 and 11% higher frost tolerance in F1 hybrids than in their
parental means, the F2 generation showing about half of this
superiority. Line BPL4628 showed a high general combining
ability, corroborating the data of Duc and Petitjean (1995).

Following this approach, screening to identify new, useful
genetic diversity for frost tolerance could be conducted with F1

hybrids from crosses between a most frost-tolerant line from Côte
d’Or and the candidate accessions, instead of (or in addition to)
testing the accession per se. Accessions whose F1 hybrids outper-
form Côte d’Or promise to contain dominant favourable alleles that
are not available in Côte d’Or. Transgressive segregants should be
obtainable from these hybrids (Arbaoui and Link, 2007).

12. QTL and marker-assisted selection

Arbaoui et al. (in press) analyzed 101 recombinant inbred lines
(RIL) from the cross Côte d’Or/1 � BPL4628 for frost tolerance and
for leaf fatty acid composition, with and without hardening. They
identified several lines that showed significant and marked
superiority compared to the better parent Côte d’Or/1 (e.g., the
lines 33, 69, 95) and work on this material is continuing. The cross
was used to identify putative QTL for frost tolerance and fatty acid
composition. Three useful QTL for unhardened frost tolerance were

experiments, especially with further parental lines, are necess
before embarking on a marker-assisted selection for frost tolera
in winter faba bean. Nevertheless, once reliable QTL for f
tolerance are detected, it might be considerably more efficien
work with a marker-assisted approach than to rely on
phenotypic frost test approach, given the large number
replications, and thus time, labour and infrastructure needed
establish adequate heritability of the results (Arbaoui et al.,in pre

Avia and Lejeune-Hénaut (2007) identified several QTL for f
tolerance in the model species Medicago truncatula, thus open
new options for the application of comparative genetics am
different legume species in this area (I. Lejeune-Hénaut, perso
communication, 2008).

13. Knowledge on frost tolerance from molecular-genetic
research, mainly in Arabidopsis

Hundreds of genes are known to be up- or down-regulated du
cold (COR, cold-regulated genes; Thomashow, 2001; Park and Ch
2006). Early studies in Arabidopsis resulted in the identificatio
four COR-genes, COR6.6, COR15a, COR47 and COR78 (Hajela et
1990; Thomashow, 1998). The gene COR78 is as also known
RD29A (responsive to drought). A COR-gene identified later
legume, Medicago sativa ssp. falcata, was named MfCAS30 (Medic

falcata cold acclimation specific; Pennycooke et al., in press).
The gene COR78 on chromosome V of Arabidopsis at At5g52

codes for a desiccation-responsive, temperature-induced 78
protein, with sequence similarity to the late embryogen
abundant proteins (Nakashima and Yamaguchi-Shinozaki, 20
It is thought to have a direct protecting function in frost
drought stress. This gene contains a cis element in its promo
called CRT(C-repeat) that shares the CCGAC sequence as a c
element with many COR-genes (Yamaguchi-Shinozaki and Sh
zaki, 1994). The cold-induced genes that are jointly activated
this common C-repeat motif are called the CBF regulon.
examples, COR78 in Arabidopsis and MfCAS30 in Medicago fal

are activated by the CRT element in response to low temperat
and to dehydration stress via the transcription factor protein, C
binding factor (CBF). One of the corresponding genes coding
this transcription factor, on Arabidopsis chromosome IV, cont
two specific regions in its promoter that are activated by a furt
protein named ICE (inducer of CBF-expression). ICE, in turn
produced as a very specific and rapid response to cold stress, bu
regulation is only partly understood (Zhu et al., 2007). Mito
activated protein kinases (MAPKs), calcium and abscisic acid ar
involved in both cold and drought signal transduction (Kaur
Gupta, 2005). The activation of stress-responsive genes via
CRT-binding factor seems to be very widespread (Novillo et
2007). This gene, when transferred from Arabidopsis, increased
stress tolerance of the grass Festuca arundinacea (Zhao et al., 20
A combination of the Arabidopsis CBF-gene (transcription fac
and the stress-inducible promoter of the cold-responsive g
COR78 when used as transgene improved the tolerance of toba
to both drought and cold (Kasuga et al., 2004).

Several different CBF genes exist, and apparently play differ
roles in an intricate and complex pattern of regulation (Nov
et al., 2007). Many further transcription factors are involved
highly complex net of signalling and metabolic pathways. F
stress, for instance, stimulates the accumulation of reactive oxy
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detected, and for one of them the exotic parent carried the
favourable allele. After cross-validation, the QTL jointly explained
8.6% of the genotypic variance. For oleic acid content, three QTL
were detected in unhardened leaves that explained 40.6% of the
genotypic variance after cross-validation. This fatty acid was
significantly correlated with unhardened frost tolerance. More
Please cite this article in press as: Link, W., et al., Winter hardines
doi:10.1016/j.fcr.2008.08.004
species such as hydrogen peroxide. Being damaging agents t
cause injury, but also they are signals that induce protec
mechanisms (Suzuki and Mittler, 2006). It is unclear whethe
choose as a breeding objective an upstream gene like CBF or
that shows an apparently specific response to the stress (in
case, frost), or a downstream gene like COR78 or MfCAS30
s in faba bean: Physiology and breeding. Field Crops Res. (2008),
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lates a specific aspect of the frost tolerance response. The
ber of candidate genes is, of course, smaller at the more
ream levels of metabolism.
ecently a step forward in the techniques for regeneration of
sgenic V. faba plants has been reported, although transforma-
of faba bean remains very laborious, slow and with low

iency. Few transgenes have been so far introduced (bar, uidA,
I, sfa8, lysC). Molecular-genetic progress in Arabidopsis,
icago, Lotus and Pisum will enlarge the list of genes with
ntial for use in improving abiotic stress tolerance (Hanafy

l., 2005; Link et al., in press).

Conclusions

s has been shown, very little molecular-genetic detail is yet
lable on the winter hardiness and frost tolerance of winter faba
. It is a pressing task for faba bean breeders and researchers to
w up the Arabidopsis, Medicago and Lotus research on abiotic

ss, to identify shortcuts in the path to apply any further
uing pertinent results, and to achieve results in this crop.
nd this, the search for and identification of new, useful genetic

rsity within V. faba should allow a next step forward. Gepts
l. (2005) called for a major advance in legumes within a few
s in detecting new QTLs and new, useful alleles by genetic and
ciation mapping. The identification and incorporation into the
ding germplasm of new, not yet used frost-tolerance alleles
retain superior growth, productivity and grain yield and the
ision of pertinent knowledge to plant breeders is one of the

or challenges in this field.
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Kole, C., Hall, T.C. (Eds.), A Compendium of Transgenic Crop Plants. vol. 3. Wiley-
Blackwell.

Liu, Z.S., Zhao, Y.Z., Bao, S.Y., Guan, W., 1987. Low temperature and faba beans (Vicia
faba L.) yield. Fabis Newsl. 18, 14–17.

López, M., Herrera-Cervera, J.A., Lluch, C., Tejera, N.A., 2006. Trehalose metabolism
in root nodules of the model legume Lotus japonicus in response to salt stress.
Physiol. Plant 128, 701–709.

Margesin, R., Neuner, G., Storey, K.B., 2007. Cold-loving microbes, plants, and
animals—fundamental and applied aspects. Naturwissenschaften 94, 77–99.

Naidu, B.P., Paleg, L.G., Jones, G.P., 1992. Nitrogenous compatible solutes in drought-
stressed Medicago spp. Phytochemistery 31, 1195–1197.

Nakashima, K., Yamaguchi-Shinozaki, K., 2006. Regulons involved in osmotic stress-
responsive and cold stress-responsive gene expression in plants. Physiol. Plant
126, 62–71.

Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shino-
zaki, K., 1999. Antisense suppression of proline degradation improves tolerance
to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205–210.

Nilsen, E.T., Orcutt, D.M., 1996. The physiology of plants under stress. In: Abiotic
Factors, John Wiley and Sons, New York.

Novillo, F., Medina, J., Salinas, J., 2007. Arabidopsis CBF1 and CBF3 have a different
function than CBF2 in cold acclimation and define different gene classes in the

Park, E.-J., Chen, T.H.H., 2006. Improvement of cold tolerance in horticultural c
by genetic engineering. J. Crop Improvement 17, 69–120.

Park, E.J., Jeknic, Z., Sakamoto, A., DeNoma, J., Murata, N., Chen, T.H.H., 2003. Ge
engineering of cold-tolerant tomato via glycinebetaine biosynthesis. Cryo
Cryotechnol. 49, 77–85.

Paull, J.G., Rose, I.A., van Leur, J.A.G., Kimber, R.B.E., Seymor, M., 2006. Breeding
beans for the Australian environment. In: International Workshop on Faba
Breeding and Agronomy, 25 – 27 October.In: International Workshop on
Bean Breeding and Agronomy. 25–27 October, Córdoba, Spain. Junt
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