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For any four genes, two at each of two loci, in a population, a 15 component 
descent measure has been introduced. These components are the probabilities 
of the 15 possible arrangements on a set of initial gametes of those genes of which 
the four of interest are copies. Since identity by descent of genes is equivalent 
to their being copies of a single gene on an initial gamete, descent measures 
have inbreeding coefficients as special cases. The individual descent measure, 
defined for four genes on two uniting gametes can be evaluated for any pedigree 
by means of an algorithm developed here. If initial gametic frequencies are 
specified, descent measures allow genotypic frequencies and disequilibria 
functions at one and two loci to be found. The procedures are illustrated for 
selfing and for sib mating. Several applications of the descent measures are 
discussed. 

We are concerned with establishing a set of parameters which will simplify 
the development of two-locus genetic models. Any such set should enable us 
to describe the joint effects of linkage and inbreeding, provide genotypic 
frequencies at two loci, characterize various two-locus disequilibria functions, 
and be amenable to straightforward evaluation. Such requirements are met by 
the set of descent measures we define and discuss in this paper. We illustrate 
their evaluation and use by applying them to selfing and to sib mating. 
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Two-Locus DJXSCENT MEAWRES 

The general two-locus descent measure X(ab, a%‘) is defined for two genes a, 
a’ at one locus and two genes b, b’ at a second locus. No restriction is implied 
on the total number of allelic states in a population at these two loci. The measure 
gives the probabilities of the various arrangements of a, a’, b, b’ on gametes in 
the initial ancestors or an initial population. 

There are 15 ways in which the four genes could have been distributed on 
initial gametes, and the probabilities of these 15 events form the components 
of the vector X. For any two genes, not necessarily at the same locus, we set 

6(xy) = 1 if x and y are copies of genes on one initial gamete, 
= 0 otherwise, 

so that the components of X(&r, a%‘) may be written as mnX$ where 

i = @au’), k = S(ub), m = 6(ub’), 

j = lqbb’), I = lqu’b’), ?z = 6(u’b). 

In other words we consider the states of descent of all six pairings of the four 
genes. Although six two-valued suffices suggest 64 components, in fact arrange- 
ments such as ,,,,Xs are impossible and the 15 components are 

x’ = (,,xg ) ,J” xl1 PO xl0 x0’ Xl0 xol 11 3 00 00 P 11 00 Y 01 10 Y 10 10 9 10 01 , 01 01 9 

00x!, oox? 9 00x: Y ooxi s 1oz 9 01x," 9 o0-c). 

These sum to one since the four genes must fall into one of these states. 
The quartets of genes for which a descent measure is defined are identified 

principally by the gametes on which they are located, while gametes are specified 
either as coming from specific individuals or uniting to form a specific individual 
or a specific generation. Since four genes can be carried on two, three, or four 
gametes, we are led to define digametic, trigametic, and quadrigametic classes 
of measures, accordingly: 

F, = X(ab, a%’ : ub, u’b’ are located on gametes which unite to 
form individual A), 

8 BC = X(ub, u’b’ : ub, u’b’ are located on two gametes from 
individuals B and C, respectively), 

yB,CD = X(ub, a%’ : ub, a’, b’ are located on three gametes from 
individuals B, C and D, respectively), 

s B(.JE = X(ub, u’b’ : a, b, u’, b’ are located on four gametes from 
individuals B, C, D, and E, respectively). 
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These definitions must be adhered to rigidly. It is not true, for example, that 
s -6 BC.DE - DE,BC . 

SUMMARY MEASURES 

It is useful to summarize these measures in various ways and in doing so we 
point out several equivalences and the incorporation of inbreeding measures 
as well as develop summary notation. The above notation is deliberately similar 
to that used for two-locus inbreeding measures (Weir and Cockerham, 1969a) 

TABLE I 

Two-Gene-Pair and Gene-Pair Marginal Totals 

S(W) = 1 6(bb’) = 0 

S(ab) = 1 

S(ub) = 0 

S(d) = 1 

S(uby = 0 

F.1 F.0 1 

S(u’b’) = 1 S(a’b’) = 0 

F.’ F.0 I 

S(u’b) = 1 S(u’b) = 0 
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which gave joint probabilities of identity by descent at two pairs of homologous 
genes. We recognize that identity by descent is equivalent to genes at the same 
locus being copies of genes on one initial gamete. The digametic descent 
measure F should contain the information implied by the two-locus inbreeding 
coefficient as well as by the usual (Wright, 1922) one-locus coefficients. 

In Table I are given the two-gene-pair marginal measures as well as the gene- 
pair marginal measures for each of the three sets of two-gene-pairs (au’, bb’), 
(ah, a%‘), and (ab’, ~$6). In the upper table the four components of the two-locus 
inbreeding coefficient are one set of marginal components of F which we now 
refer to as the general (two-locus) individual descent measure. The gene-pair 
marginals Fl. and F., are the one-locus inbreeding coefficients for the A and B 
loci, and F,, is the marginal two-locus inbreeding coefficient. In the next table 
for the individual for which F is defined Fr* and F*l are the probabilities that 
parental gametes are copies of initial parental gametes and Frl is the joint 
probability for both parental gametes, while in the lower table l.F and *IF are 
the probabilities that recombinant gametes are copies of initial parental gametes 
and llF is the joint probability for both recombinant gametes. It seems appro- 
priate to refer to Fr* and FJ as parental descent coefficients and to ,.F and -9 
as recombinant descent coefficients. Then Fr and I1F are the two-gamete 
parental and recombinant descent coefficients, respectively. 

The descent arguments involve the same gametic pathways for Fl. and F., 
as well as for ,.F and .1F and the equal values for each pair are denoted as Fl 
and 1F, respectively. This implies also that F,, = F,,F,, and raF = olF. We use F 
to refer to the average (P + F.l)/2. While F1* and Fe1 may differ, for our present 
or any foreseen purposes the average suffices, and so do the following averages 
in some of which some of the measures may not be equal: 

We need, then, to be concerned with only a condensed vector of nine measures, 

One additional set of summary measures, three-gene, is useful. These are 
given in Table II for the three genes (a&). Similar measures apply to each of 
the four sets of three genes, and we use the average 

It is sometimes convenient to use the following summary measures, actually 
only eight since the nine condensed measures sum to one, 

F*’ = (Fi:, &I 9 F’l, &lF;, 4 , F’, 81)s 
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where F1’ = ,,F:: . 
Appendi: A. 

Th e mear transforms between I? and F* are given in 1’ 

TABLE II 

Three-Gene Marginal Totals 

(au%) 

.,F:: i- .cd.’ = F 1. , .,F:.’ + .&.’ = F” 

.I&: + .,F,o: = .,F 

INITIAL ANCESTORS OR FOUNDERPOPULATION 

Two types of initial ancestors or populations will be considered. Each is 
characterized by gene frequencies pi for alleles ai , qj for alleles bj and gametic 
linkage disequilibrium dij between genes ai and bj or, alternatively, by gametic 
frequencies p,, = piqi + Aif . In one case the initial ancestors, say N of them, 
take the frequencies expected from randomly uniting a specific set of 2N 
gametes, which amounts to averaging over all randomizations of pairings of the 
gametes. For the other case the N initial ancestors are assumed to take the 
frequencies expected for a random sample from an infinite randomly mating 
population, which amounts to averaging over all random samples of N initial 
ancestors. The difference between the two cases of initial ancestors will become 
clear as we enumerate the initial frequencies, but it can be seen that the results 
for the second case are produced by letting the 2N gametes take the frequencies 
expected for a random sample from the infinite randomly mating population. 

For digametic initial frequencies we use Si!r to denote the frequency with 
which a random pair of gametes is aibj for the first gamete and a,b, for the 
second gamete. Since the argument is symmetrical for gametes, 9’Ft = 9’:: . 
For trigametic initial frequencies let 9’& denote for three random gametes 
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the frequency with which the first is a,bj , ak is on the second and bt on the 
third, and again there is upper-lower symmetry, B,,, - ii - 9:;” Finally, for four 

random gametes we use B,,, ‘Ii for a specific ordering of ai , b, , a,, bz each on 
separate gametes, and there is allelic symmetry 9;‘; = P$ = 9$7 . All of 
these frequencies are for four genes. 

We use the convention that an index replaced by a dot implies summation 
over that index, e.g., 

There are many equivalences among the various sums of 9Fz , PF,z , and 9’2; 
because adding over genes for any random gamete reduces by one the number 
of gametes involved in the frequency. The principal examples are, symmetrical 
arguments being omitted, 

We illustrate the difference between the two sets of initial ancestors for Bf; . 
Let Ntj be the number of a,b, gametes, Ni. the number of ai genes and N, 
the number of bi genes. Now 2N gametes provide N(2N - 1) pairs of gametes, 
and for each pair there are two pairings of a with b, each on different gametes, 
giving a total of 2N(2N - 1) pairings. There are N,.N, - Ni, pairs of ai 
and bj genes on different gametes. Thus, the frequency, 

.3 2N(2N - 1) = Pi% - 2~ _ 1 ) 

Ni. N. 
2N 

= pi 3 k = pj , 
N.. 

s = @‘If = p, = piqj + Ai* , 

for an initial set of 2N gametes. Just let N + co for initial ancestors being 
random members from an infinite randomly mating population, and 9’:; = piqj . 
Examples of the remaining frequencies are listed in Table III for a specific set 
of gametes. The first terms (letting N + co) are those for a random sample of 
parents. 

A comment on disequilibria is in order. A disequilibrium is the deviation 
of a frequency from that based on random association of genes and accounting 
for any lower order disequilibria. We shall designate these disequilibria as 9 
and index them according to the sum to which they apply. By referring to 
Table III we can quickly identify the two-gene disequilibria. For example, 
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9’:. = pip, + 9;. and 59;. = psp&N - 1). Some other two-gene disequi- 
libria are 

To find three-gene disequilibria we account for the two-gene disequilibria 

or 

.qy = - 41 - 2Pi) 
2N-1 ’ 

Four-gene disequilibria are again the remainders after accounting for the lower 
order ones and will be considered in more detail later. 

We note that with an initial set of gametes all disequilibria obtain, some due 
to finiteness, some due to gametic linkage disequilibria A’s, and some due to 
both. When initial members are a random sample the only disequilibrium is 
gametic 

&* - A . . . - t3 9 

all other two gene and higher order ones being zero. 

GENOTYPIC FREQUENCIES 

The expression of genotypic and other frequencies is a function of the descent 
measures and the conditions assumed for the initial ancestors. The descent 
measures characterize the descension of the genes, at most two at each of two 
loci, for an individual or for the population of which it is a random member, 
taking into account size of the population, mating pattern, and so on. Excluded 
are disturbing forces such as mutation and selection. 

For frequencies or disequilibria in subsequent generations corresponding 
to those for the ancestors we shah replace B by P and 9 by D. Corresponding 
equivalences and properties of symmetry remain for P and D. 

For an individual under question characterized by the descent measures F 
we write the genotypic frequency as P$i for the zygote formed by the union of 
male gamete a& with female gamete Ukbl . For Ui , ak and b, , b, not alike in 
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state (as implied by the distinct subscripts) we know that four distinct initial 
genes are involved and these may have been arranged on two, three, or four 
gametes. With probability ,,,,F~~ they were arranged aibj and a$, so that the 
genotypic frequency includes the term PzL s&i. With probability ,,Fii they 
were arranged a,b, and akbj and, consequently, the term P2j 11Fit . For the 
summary component 2,$:,0 = ,,F,$ + ,,,Fi,$ the arrangement was aibj and ak 
and b, on separate gametes with probability s$‘~~ and a,b, and ai and bj on 
separate gametes with probability ,,F~~ leading to the term 2,$~~ h(P& + ~9’:;~). 
By such arguments we find the frequencies for double homozygotes and single 
heterozygotes, as well as double heterozygotes, and display them in Table IV. 
To find trigametric frequencies Py,L , one simply replaces F by y, the appro- 
priate trigametic descent measure, in Table IV. Correspondingly, for quadri- 
gametic frequencies one uses S, the quadrigametic descent measures. 

DISEQUILIBRIUM FUNCTIONS 

In order to arrive at disequilibrium functions we first need sums of the 
genotypic frequencies, and we use the same convention as for 9. Any of these 
sums may be found by appropriate summations of the terms in Table IV. It is 
more enlightening, however, to develop some of them directly. 

Summation over all but one index provides the gene frequencies as before, 

P”: = pi , P::’ = qj . 

There are three types of gene-pair sums Pi: , Plf and Pi; each with its counter- 
part. For Pi: the alleles are distinct and, thus, nonidentical by descent with 
probability (1 - Fr) and 

P;: = (1 - FJ 9’“:: = (1 - Fr) p,p, gi- , 

while for Pi: the genes are identical by descent with probability Fl and ai with 
frequency pi and nonidentical with probability (1 - FJ and a(ai with frequency 
9’:: ) 

pi: = KP, + (1 - 4) 9’:: = pi” +p(l - p) (Fl 2Ny 1 - 2N1u 1 ). 

With respect to Plf the two genes came from an original gamete with probability 
F1 and two distinct gametes with probability (1 - P), 

P:~=F’P,~+(I-F~)~T;=~~~~+~‘~(F~~N~N_~ - ’ 2N- 1 
). 
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Using the same type of argument for P!; but replacing Fr with rF leads to 

Py;=p,qj+d”(‘F2;y1 - l ). 
2N- 1 

The difference 

is provided entirely by the parental and recombinant descent coefficients and 
the initial gametic disequilibrium. All finite corrections disappear since all 9 
are zero except 9.. ‘j = d when the initial ancestors are members of an infinite t3 
random mating population. 

Before proceeding to three-gene sums we shall consider two-gene disequi- 
libria. For alleles these are 

0;. = -F&P, + (1 - 4) .%. > 0:: = F&(1 - &) + (1 - I$) 9:: , 

which are the usual results for inbreeding. One can obtain any D for homozygotes 
from that for heterozygotes in a simple manner. As an example consider the 
substitution of i for k in 0;. . Substitute -(I - pi) for p, , and substitute the 
index i for k. 

The other two types of two-gene disequilibria are 

2N 1 
2N-1 - 2N-1 

), Dl’; = A,+ (1F ,“” 1 - 

For the remaining sums and disequilibria we shall assume initial ancestors 
to be random and avoid the cumbersome finite corrections for a specific set of 
gametes. Direct arguments for three-gene sums require the three-gene descent 
measures, 

Pi’ = &P,j + (OF, + 18) PiP,j + oF,OP& + &P&j 

=F~piq*+(1-FF,)P~q~+$-(1F+F1-22,F~)P*A,j+,F:A,. 

The three-gene disequilibrium, after accounting for two-gene disequilibria, 
is found to be 
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By performing our substitution rule of - (1 - pi) for p, , 

0::’ = ,Ff( 1 - 2~4 d, . 

Switching k and i in 02. leaves it unchanged, and we have three-gene symmetry 
0;: = D,“l’ . This does not hold for the P’s, however, 

PC - PZ5 = (Fl - ,F)(p& - p&l,), 

the difference being due to two-gene disequilibria which are taken into account 
in finding the three-gene D’s. 

The four-gene frequencies are just those given in Table IV. To find four-gene 
disequilibria we account for all lower order ones including two-gene-pair ones 
(e.g., Dk.0::) 

The term 7i1 was called identity disequilibrium by Weir and Cockerham (1969a). 
The corresponding measures $’ and ii~] could be called parental and recombi- 
nant disequilibria, respectively, all three being descent disequilibrium functions 
for two-gene-pair descent measures. By performing our substitution rule, 

0:: = -TIIP~I - Pi) Wz + (? + IIT) Adi, 

+ FE[(~P~ - l)(q,Aiz + dir) - 2Ad4, 

D$ = -~nP~Pdl - 49) + (F + IIT) 44,f 

+ Fif[‘[(%j - l)(PiA, + Pdij) - WjAd, 

653/4/3-5 



312 COCKERHAM AND WEIR 

To summarize these results we note first that all two-gene disequilibria are 
functions of the corresponding two-gene marginal descent measures and three- 
gene disequilibria of the three-gene marginal descent measure, while four-gene 
disequilibria involve in addition to the four-gene descent measure F:: the three 
two-gene-pair descent disequilibria functions. If initial ancestors are random 
and in linkage equilibrium, all dij = 0, then there is only two-gene allelic 
disequilibrium due to Fl and four-gene disequilibrium due to the identity 
disequilibrium, yll . If we include as linkage disequilibrium all those parts 
other than that due to identity by descent of alleles, then it is dependent on and 
strongly influenced by initial disequilibrium as well as the other descent measures 
to be explored. 

A few other things should be noted. All D’s sum to zero over any index, e.g., 

F Dff = 0, c 02 = 0, c DFt = 0. 
k 1 

When there are only two alleles, ai and ak , for example, 

Pi = 1 -2%~ P Aij = -A,, D;: = -0”. 

If further, qj = 1 - pr then Aij = A kl = -Ait = -Akj with corresponding 
equalities among the nonallelic two-gene disequilibria. 

While we have been able to express all deviations from random associations 
of genes in terms of D’s and relate these to descent measures and initial condi- 
tions there are other comparisons often of interest. One is the difference between 
double heterozygotes 

2(P$ - P;;) = 2(F11 - IIF)(AijAkt - A,&) 

+ 2(F1 - lF)(PiqiA,, + P,qtAtf - PiqtAkf - IWAtt)* 

The term (AijAk, - Ai,Akj) is zero if either locus has only two alleles. The 
difference 2 &+i,l+i (Pg - P$ is actually equivalent to 2(Ptf - P$) = 
2(F1 - 9) Aij and is the result for two alleles at each of the loci. 

Of interest also are the deviations of genotypic frequencies from products of 
one-locus frequencies or of gametic frequencies or of recombinant frequencies. 
These can be found in terms of gene frequencies and D’s and translated into F’s 
and A’s by removing those terms for the marginal products, e.g., Pt.P:{ = 
(pip, + Dk.)(qjqz + D:{). These will be studied in more detail in terms of 
examples. 

For tri- and quadrigametic disequilibrium functions simply replace F by y 
and 5, respectively. 
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ALGORITHMSFOR FINDINGTHE DESCENT MEASURES 

Some familiarity and understanding of the descent measures is accomplished 
from algorithms for their computation from pedigrees. The procedure for 
finding the inbreeding coefficient Fl is well known. The procedures for F,, , 
F,, , F,, , F, were developed in detail by Weir and Cockerham (1969a). To 
this list we wish to add the other descent measures. We work with the summary 
components. 

The arguments for the parental descent coefficient F1 and the recombinant 
descent coefficient 9 are interrelated, and they must be considered together. 
Any F measure for an individual is the same as the 8 measure, called coancestry, 
between random gametes from each of the parents by definition. Then, referring 
to Fig. 1, 

FA = e,, . 

For FA1 the argument is the average of that for each of the gametes, one from B 
and one from C. The gamete will be parental with probability (1 + h)/2, where 
h is the linkage parameter, in which case the probability of having descended 

KLMN 

D E G I-I 

\/ \J 
B C 

\J A 
FIGURE 1 

from an initial gamete is just FB1 or F, 1. The gamete will be recombinant with 
probability (1 - X)/2 and the appropriate measure is lFB or lFc. Consequently, 
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In the case of two random gametes from the same individual 

For the recombinant descent coefficient the argument is always for an a gene 
on one gamete with a b gene on another gamete and, thus, involves genes from 
different ancestors whether recombination has occurred or not; 

and expands back in the pedigree in the same manner until a common ancestor 
becomes involved. For two gametes from the same individual 

e F; + 3~ 
1 BB = 2 (3) 

the argument being for two genes on the same gamete half the time and on 
different gametes half the time. For expansions of Fo and ,,F’ simply substitute 
the index. 

For three-gene probabilities we note that three genes, two at one locus and 
one at the other locus, may be carried on two or three gametes. We illustrate 
the expansion of digametic three-gene measures with lFiA = @& . The argu- 
ments are symmetrical for any three genes and any two individuals, that is for 
an Q and b gene from one individual and an a or b gene from the other with 
equal probability. 

To keep records straight we let 

where rO& is for a random gamete from B and a random gene (a or b) from C, 
and vice versa for r0:c.a . Bringing in the parents of the second individual 
simply averages the function, that is 

dkc = lehGH) = wkG + le~B.H). 

The gamete from individual B will be parental and from D or E each with 
probability (1 + A)/4 and recombinant with probability (1 - A)/2. 

The notation for the trigametic three-gene measure l&,C,E implies two genes 
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at one locus from D and C and a gene at the other locus from E. Averaging the 
expansions for r19&, and r13.& produces 

&c = I(1 + 4/%~:DG + 14DH + d&G + &If> 
+ Kl - 4/W( r' 1 1DG.E + l&f,E + 1hG.D + 1dEH.D 

+ 1~:GD.H + 1Y:GE.H + l&fD,G + ld.IfE.G)* 

Such expansions are continued until common ancestry is encountered, 

(4) 

1e:m = Ml + w4E + h& + [Cl - w411-FB. (5) 

The argument is simpler for the trigametic three-gene measure I&,E,G . 
As above, bringing in the parents of each individual just averages the function 

and the parents of G may also be brought in. Expansions involving common 
ancestors are given in Appendix B. 

For the three two-gene-pair and four-gene identity measures, the expansions 
follow the same pattern as those given by Weir and Cockerham (1969a) for F,,,, 
until common ancestry becomes involved. We now need to consider digametic, 
trigametic, and quadrigametic cases. Taking account of the parents of B and C 

where yg,cH = (YE,‘,, + y&&2. Taking account of the parents of D and E 

&EC = &&EC = [(I + h)/41(y1’ K.EG + Y&G) + [(I - h)/41(61,1B, + s’,1,,,) 

= [(I + X)/81(&4G + Y&G + &4G + Y&G) 

+ [(I - 4/81(%~,, + %i,NG + 8ttf,MG + 81,1,,,G), 

s:E,GH = s:&GIf = @&,Gii + sl&.GH) 

= @%if,GH + s&,GIf + s’,‘,,Gk? + s%,GH), 

and the parents of G and H may also be brought in. 
While these three general expansions have been written for the two-gene-pair 
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component X l1 of each measure, they also apply to the other two-gene-pair 
and the four-gene identity measures. Each Xl1 is simply replaced by X1,, ,,X, 
or Xi: . The notational ordering of the genes as pointed out in the introduction 
must be adhered to strictly. The connection between the joint parental and 
recombinant quadrigametic descent measures is rlSDH,cE = 2$&,. 

Measures involving common ancestors require special attention. We give 
them for es, here and list the remainder in Appendix B. 

811 llBB = 
(l ; ‘I2 F; ) ’ ; h2 lF;B + (l - ‘I2 

8 

e 1lBB = q(l + FllB) + qFIB 
(7) 

6" = (' ; h)2 (F:, +Fg) + F,F:, + (' ; ')' (1FB + IIFB) BB 

(F; + IIF~) + v1F:" + _-ll+&FB +F;). 

With these algorithms, and given the measures among the initial ancestors, 
one can compute the various measures for any pedigree. For most purposes 
the initial measure will be taken to be sc,Fz = 1. 

For individuals of populations that go to fixation we note the limiting values 
of the measures, 

F -F 1(m) - 11(m) = 1, F&, = 1F(,) = Ft:, = nF(m) = &, = F&o, . 

The key to the final results is then F:,) . 
If linkage is complete, X = 1, then F:,, = F$ = 1 and the other measures 

are the same as the one-locus inbreeding coefficient, 

F::(t) = Ph = 2(t) = F,,(t) = P(t) = h(t) - 

EXAMPLES OF SELFING AND SIB MATING 

Self-fertilization provides the simplest illustrations of the use of the measures. 
We begin in the zero generation with asFii = 1. Some F's remain zero. Since 
all four genes at any time must trace to genes on two original gametes, the tri- 
and quadrigametic components of F are zero in all generations, 
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Applying the algorithms the usual results are obtained for the identity by 
descent measures (t = 0, 1, 2,... indexes generations) 

G(t) = 1 - w3 
F 11(t) = 1 - wt + ((1 + W4Y, 

?IllW = ((1 + W4Y - w* 

The other two-gene descent measures must be considered jointly: 

Solving these two equations and noting that F:,, = 1, ,Fto, = 0 

1 
Ftt, = 2--h + (#+, P(t) = & [l - (;)*I- 

From these all other measures may be found directly 

F1l =Fll +Fl-Fl, 19 = 6, + 9 - Fl , 

F;: = (F;, + F1 + lF - 1)/2. 

The genotypic frequencies are summarized next for random ancestors, 

and the final frequencies are 

We may also argue from an initial individual 9:: = 1 or a specific pair of 
gametes with gene frequencies of 3 and A,, = A,, = -A,, = -A,, = 4. 
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We simply note that homozygotes fall into parental and nonparental classes 
so that 

Pll 11(t) = J%(t) = mw 

1 I 
=j 2-x- l 

* (g+’ - (ij” + ; (qq, 

1 1-A 
=z 2--h+ [ +&j”- (;)“+;(qq], 

2 f%(t) = ooG(t) = ; [(qq” + ($j”], 

2 pzt, = 11%(t) = ; [(q-q” - (g]> 

2 J%(t) = J%(t) = ; [(;j’ - (J+jt], 

the latter one being the same for all four single homozygotes. 
We illustrate in terms of gametic linkage disequilibrium the difference in 

results for the two types of initial ancestor. For random ancestors 

D’j(,) = F:,) A,j = -!-- [ 1 + (1 - A) (;jt] Adi , 
2--h 

Dyt,, = A , 

while for an initial pair of gametes, 

(Wright, 1933). The difference is due to the linkage disequilibrium among final 
subpopulations from different initial founders. For random parents one-half 
of the original disequilibrium is fixed even with free recombination. 

The mating scheme for sib mating is shown in Fig. 2. The algorithms are 
used to determine the summary components of the general descent measure 
Fu) in the tth generation. 

Starting with the two-gene summary components, it is well known that 

Gt+e) = f -t &F,(t+,) + &F,ct, > Go) = F,(I) = 0. 

From Eq. (1) 

F:t+z) = W + WWtt+1, + [U - WW~t+,) , 
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Generation 

D E t 

vx.v 
B C tt I 

/ 
A t+2 

FIGURE 2 

while from Eq. (2) by identifying the parents of C with those of B 

PA = WDD + #DE + l&D + lb) = HleDD + l-FE), 

since both members of each generation are equally inbred. Substituting the 
value of lODD from Eq. (3) 

Separate equations for the parental and recombinant descent coefficients can 
now be found 

The three-gene component 1Fl1 requires knowledge of three other three-gene 
measures. From Eq. (4) 

which leads us to introduce the notation 

1 Q' l(t+l) = 1 e' IDD - ---it? 1 lEfi, &+I) = 1dDD.E = 1&D 3 

1 S l(t+l) = 1dDE.D = 1dED.E 2 
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so that 

1Fh+2) = [Cl + W41(&+1, + IQ:(t+l,) + [(I - W41(1&+1) t &ttd- 

The transition equation for rQ:u) follows from Eq. (5) and those for IR&t~ 
and IS&t) from Appendix B. They are listed in Appendix C. While two-gene 
summary components were expressed in terms of two-gene components only, 
three-gene transition equations require three-gene and two-gene components. 

The methods for determining F,,(,) are given in Weir and Cockerham (1969a) 
and the details in Cockerham and Weir (1968). The remaining three summary 
components are written as F;,, = (F::(,, , F$ , ,,Fc,,) and from Eq. (6) 

F, = [(I + X)2/81(& + &,,I + K1 - h2NW,, 

+ [(I - ~)2/81(&m + &E,ED), 

which, after defining 

is written as 

h+2) = W + X)2/f31(p (t+1) + !&+I)) + w - ~2M~(t+I) + I(1 - h)2/41%+I, * 

The equation for Qu) follows from Eqs. (7), and those for R, S, T, and v from 
Appendix B. They are all listed in Appendix C. Four-gene measure transitions 
involve two-, three-, and four-gene measures. 

For the initial values &‘&,j = 1 the values of the measures introduced into 
the transition equations are given in Appendix D for t = 1, and the values of 
F* are given in Appendix E for the first three generations. The progress towards 
equilibrium is indicated, for X = 0.0, 0.5, 0.9, 1, in Fig. 3. 

From the final value, F&, = l/(4 - 3h), the final linkage disequilibria for 
random pairs of initial ancestors are found to be 

and the final genotypic frequencies are 
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FIG. 3. Sib mating summary measures for A = 0.0, 0.5, 0.9, 1.0. 

However, for four specific initial gametes, 9:; = -A,,/3 and 

there being no linkage disequilibrium with free recombination. Thus, for the 
two initial genotypes 9:: x 94 , the final population is 

p&, l l--h = p;;(m, i,j = 1,2, 3,4 
4(4 

1 
- 3h) 4(4 - 3h) i#j. 

If instead the initial pair were double homozygotes 9:: x 9’:: the final popula- 
tion would be 

P$oj = P&,, = (2 - X)/2(4 - 31\) p& = P&m, = (1 - A)/(4 - 3h) 

as given by Haldane and Waddington (1931). 
These final results do not depend on the constitution of the initial population 

other than a fked set of gametes which is demonstrated in Appendix F. 
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DISCUSSION 

To aid the development of two-locus genetic models we have defined a 
two-locus descent measure. For any four genes, two at each of two loci, the 
measure gives the probabilities of the possible arrangements of the genes of 
which these four are copies on a set of initial gametes. For an individual the 
descent measure is defined for four genes on two uniting gametes. It is the 
argument back to initial gametes which is the key to the whole development, 
and which points out the departure from other procedures (e.g. Kimura, 1963). 
When two genes at the same locus are copies of genes on one initital gamete, 
they are identical by descent so that the introduction of two-locus descent 
measures serves to extend the one-locus work of MalCcot (1948) and the two- 
locus work of Haldane (1949) and Schnell (1961). It subsumes our earlier work 
(Cockerham and Weir, 1968; Weir and Cockerham, 1969a,b). Descent measures 
are defined as probabilities and simple probability arguments are used through- 
out. 

While there are 15 possible arrangements of the antecedents of four genes, 
it was shown that there are nine distinct valued components of individual 
descent measures. Individual measures are digametic, and use is made of 
trigametic and quadrigametic measures. 

The major use of individual descent measures is in the expression of genotypic 
frequencies. For systems other than random mating, the traditional approach 
has been to use mating type frequencies to find two-locus genotypic frequencies 
(e.g. Haldane and Waddington, 1931). This approach quickly becomes cumber- 
some as the number of alleles per locus increases and the degree of inbreeding 
decreases. Once descent measures have been evaluated for a pedigree, the struc- 
ture of any generation can be related to that of an initial population. In particular 
the frequencies of various pairs of uniting gametes can, by use of individual 
descent measures, be expressed in terms of initial gametic frequencies. With 
the nine distinct components of the individual descent measure, all mn(mn + 1)/2 
genotypic frequencies for m and n alleles, respectively, at two loci can be 
expressed in terms of mn gametic frequencies. In this work we have assumed 
that either the frequencies of initial gametes are specified or that they are drawn 
from an infinite random mating population of known composition. Genotypic 
frequencies in later generations can then be given as functions of descent mea- 
sures which are specified by the pedigree. 

With genotypic frequencies known, it is a simple matter to find disequilibria 
functions. In general these functions are viewed as departures of joint proba- 
bilities of events from those expected when events are independent. A complete 
listing of disequilibria is given. For example, such quantities as linkage dis- 
equilibrium, difference between coupling and repulsion double heterozygote 
frequencies, and deviations of two-locus genotypic frequencies from products 
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of corresponding one-locus or gametic frequencies may be expressed explicitly 
in terms of descent measures and initial gametic frequencies. It is then possible 
to give precise expressions for the dependence of events at two loci and discuss 
for example the interaction of linkage and inbreeding or the presence of dis- 
turbing forces such as selection in populations of known pedigree. 

The evaluation of descent measures follows a well defined algorithm. It was 
found to be simpler to work with eight summary components of the components 
of the individual descent measure. Two of these were the one- and two-locus 
inbreeding coefficients. Evaluation of the latter has been completely documented 
(Weir and Cockerham, 1969a,b) and need not be considered further. Among 
the remaining components there are three classes: two are digenic (parental 
and recombinant descent coefficients, respectively), one trigenic, and three 
quadrigenic. All are digametic. Each class is evaluated separately and complete 
details for obtaining transition equations between successive generations are 
given. Trigametic and quadrigametic measures need to be used in these transi- 
tion equations, all of which are linear and in a convenient form for computer 
work. They appear simpler than those resulting from the work of Narain 
(1966). 

The use of descent measures was illustrated for selfing and for sib mating. 
Selfing at two loci has been studied extensively (e.g. Wright, 1933 and Narain, 
1965) and we were able to duplicate known results. Previous results for sib 
mating (see Cockerham and Weir, 1968 for review) have been limited mainly 
to discussions of equilibrium populations for two alleles per locus. To find the 
individual descent measure we needed 30 linear one-step transition equations 
each involving two, four or six variables. We stress that once the descent measure 
is found, genotypic frequencies for any number of alleles per locus follow. 
Graphs of the summary components of the inbreeding measure were displayed 
in Fig. 3. Sib mating populations have substantially reached inbreeding equilib- 
rium by the twentieth generation. Initial equality of Fi and iF indicates that 
two nongametic genes, whether or not at the same locus, are equally likely to 
have arisen from one initial gamete. As linkage decreases these values diverge 
further. The point of intersection of Fl and F1 indicates the time at which genes 
at the same locus and genes on the same gamete are equally likely to have arisen 
from one initial gamete. This point becomes later in time as linkage increases. 
Until h = 8 there is greater ultimate probability that four uniting genes arose 
from two than one initial gamete. For h greater than Q the situation is reversed. 

It should be clear by now that the effects of linkage with inbreeding are of 
two varieties: recombination between the genes and linkage disequilibrium. 
The effects of the linkage parameter are entirely on the descent measures 
which in conjunction with the initial linkage disequilibrium and gene frequencies 
determine the genotypic frequencies. With no initial linkage disequilibrium 
only the one- and two-locus inbreeding coefficients are required. The result is 
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a transient one and is to increase the frequencies of double heterozygotes and 
double homozygotes by an amount proportional to the identity disequilibrium 
and to lower the frequencies of single heterozygotes correspondingly. It is 
transient because the identity disequilibrium goes to zero with fixation. 

The principal effects of linkage disequilibrium can be abstracted out in terms 
of gametic linkage disequilibrium; this being what has been generally studied 
in the past. This disequilibrium is given entirely byF1 and the initial disequilib- 
rium. The parental descent measure is the important counterpart for two 
nonalleles on the same gamete of the inbreeding coefficient for two alleles, and 
the parental descent measure alone in addition to Fit,) = F1l(m) = 1 is required 
for final population frequencies. The other important counterpart for nonalleles 
is the recombinant descent measure. The two together provide all of the informa- 
tion on gametic linkage disequilibrium within and among subpopulations. That 
within subpopulations is 

02 = Dff - Dfj = (Fl - J) Aij 

for a random sample of founders and Dz = (P - 9) dij2N/(2N - 1) for 
a specific initial set of gametes, and in each case goes to zero with fixation, 
F:,, = Pm . We shall use A’s in this comparative discussion to distinguish 
specific sets of gametes. When specific sets of gametes are considered to be 
a random sample from the infinite randomly mating population &dii = 
Aij(2N - 1)/2N and D$ = S@ (8 denotes expectation or average over 
random samples). 

The final gametic linkage disequilibrium is the total linkage disequilibrium 
among subpopulations at fixation. It is Dfftrn) = F&,A, for the random founders 
and q(,, = [Ffm,2N/(2N - 1) - 1/(2N - l)] 6,, for the specific set of 
gametes. 

It was necessary to introduce the idea of averaging over randomizations of the 
initial set of gametes to arrive at transient frequencies and without employing 
additional descent measures such as F:,, and F& in Appendix F. However, 
the results in Appendix F suggest that for any pedigree system of mating the 
final frequencies are the same for all randomizations or sets of initial parents 
for a specific set of initial gametes. 

If we consider initial sets of parents to be random samples from the infinite 
randomly mating population, then we can decompose the total final linkage 
disequilibrium, Dfftrn, , into that, 6BfIcm, = (Fml - 1/2N) Aij , among final 
subpopulations from the same initial ancestors and the remainder, 
%m, - &Bii -A ..trn) - ,,/2N, among final subpopulations from different initial 
ancestors. The latter is, of course, just the covariance of the genes in a sample 
of 2N gametes. 
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To illustrate also the connection between the two initial populations for 
frequencies, consider 

fy = $iQ + (F1 2;y 1 - 2N1e 1 ] a,. 

If the initial gametes are a random sample then L?&& = p,qi + 4,/2N so that 
CC? = Pff = piqj + PA, . While we have treated the two sets of founder 
conditions separately, one can always produce the results for a random sample 
of parents from those for a specific set of initial gametes by letting the set of 
gametes be a random sample from the parent population. 

Fixation probabilities or frequencies are given simply by Pff(,, or ptm, . 
Since we can express genotypic frequencies in terms of F* and the initial 

frequencies, we can, of course, apply these to a quantitative model of gene 
effects for two loci to produce means and variances. Thus, we can quantify 
the effects of inbreeding and linkage on inbreeding depression and on the genetic 
variance among individuals. 

We have concentrated on the digametic descent measures F* and have 
mainly employed the trigametic y* and quadrigametic S* ones in the general 
algorithm. They, of course, provide important information. One application 
is in the determination of the variance of linkage disequilibrium. Other applica- 
tions are to be explored. 

Also, we have concentrated on the F* measures as they apply to the descension 
of neutral genes. It should be apparent, however, that these measures in con- 
junction with gene frequencies form a model for the decomposition of an 
arbitrary set of genotypic frequencies into various marginal and joint frequencies 
in terms of correlation and higher order parameters. For example, in the analysis 
of alleles the inbreeding coefficient is defined and utilized as the correlation of 
alleles within individuals, whatever are the causes of the correlation. Similarly, 
F1 and IF may be adapted to serve as correlations of pairs of nonalleles. The 
other parameters are higher moment ones, three-gene, two-gene-pair, and 
four-gene. All together they provide a parametric model for the analysis of data 
on genotypic frequencies. Alternatively, the disequilibria functions may have 
certain advantages as a model. A complete analysis requires a complete classifica- 
tion of double heterozygotes, but this is a problem regardless of the model. 

APPENDIX A 

The relation between the condensed set of general measures, 
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and the set of summary measures, 

F*’ = (Fit, F,, , Fl’, nF> P,’ , Fl , F1, ,F, I>, 

is F* = ZP or P = Z-lF*, where 

Y- 1 0 0 0 0 0 0 0 0’ 
110000000 
101000000 
100100000 

z= 1000~0000 
lloo~gooo 
1010~0~00 
1 0 0 1 + 0 0 4 0 
1 1 1 1 1 1 1 1 1 

z-1 = 

1 0 0 0 0 0 0 0 0’ 
-1 10000000 
--I 0 1 0 0 0 0 0 0 
--I 0 0 1 0 0 0 0 0 
-4 0 0 0 4 0 0 0 0 

4-2 0 O-4 2 0 0 0 
4 o-2 o-4 0 2 0 0 
4 0 O-2-4 0 0 2 0 

-6 1 1 1 8 -2 -2 -2 1 

APPENDIX B 

Expansions of Measures Involving Common Ancestors 

We write the parents of individuals B, C, D, etc. as Bi , Cj , D, , etc. 
(i, j, k = 1, 2), respectively. A subscript, such as i, in a measure implies that 
the measure is to be written for every value of the subscript. For example 
(primes denote distinct values of the same subscript) 

'ye,~,,,c~ = YB~B~,c~ + 'ye,~~.c, + 'Y~,B,.c, + YB,B,.c, - 

There are three trigametic three-gene identity measures with common ancestors, 
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We have already (Weir and Cockerham, 1969a) given an algorithm for finding 
X,,,, (and, hence, XI,) for the common ancestor cases. For the other two two- 
gene-pair and four-gene identity measures we introduce the notation 

and list the expansions for common ancestors 

&B,BD = (~P~)(~~$Jz,D, + I~c,B~,B~.DJ, 

&C,BD = W~)(~IY:C,~J~~ + I&cI.~&& 

6 CB.DB = WW &Dk,Bi + lSC,B~.D,Br,)' 

s ~.CD = (~/~W~B,,,C~D, + ~~B~B~~.c~DJ~ 
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APPENDIX C 

Sib Mating Transition Equations 

The four three-gene identity measures required are related by the equations, 

The six sets of two-gene-pair and four-gene identity measures required are 
related by the equations, 

where V and U were defined in Appendix B. 

APPENDIX D 

Initial Values (t = 1) of Measures Required in Evaluation of F* for Sib Mating 

Three-Gene Measures 

&, = (1 + X)/4 I&) = 0 IS:(I) = 0 
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Two-Gene-Pair and Four-Gene Measures 

!al) = (1 + V/4 [:: ::;;;;I R,,, = pl] Sh) = [(1+4] 

Tcl,= [3 FG,=[;] 

APPENDIX E 

Values in First Three Generations of Inbreeding Measures F* for Sib Mating 

t=l t=2 t=3 

FU 11 0 (1 + 44/64 (l/512)(18 + 34x + 57h2 + 44P 

+ 28X4 + 1OhS + P) 

FII 0 (2 + 3X2 + 2A3 + A4)/32 (l/256)(36 + 16X2 + 22A3 + 17h4 

+ 4h5 + X6) 

F11 (1 + h)2/4 (1 + 44/16 (l/256)(18 + 34X + 71A2 + 62h3 

+ 48h4 + 20x5 + 3P) 

19 0 (2 + 3X2 + 2X3 + h4)/32 (l/256)(18 + 18X + 15X2 + 16X3 

+ 19X4 + 8h6 + 2X6) 

F1 11 0 (1 + JY2/16 (l/64)(6 + 7X + 8h2 + 3A3) 

Fl 0 i iI 

F1 (1 + X)/2 (1 + q2/4 9(2 + 2h + 3P + P) 

1F 0 a (2 + 4/g 

APPENDIX F 

Final Recombinant Gametic Frequencies from a Fixed Set of Initial Gametes with 
Sib Mating 

A gamete received by an individual in generation t has three possible origins. 
. . 

With probabrhty F:,, it carries genes which were on one initial gamete. It 
carries genes which were on two different gametes in one initial parent with 
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. 
probability Ficn , and with probablhty Fttt, it carries two genes from gametes 
in two different parents. They sum to one, Ff,, + F:,,, + Ftctb = 1, and each 
satisfies the recurrence relation 

%+a) = N2 + WWt~+,) - (N4)%+1, - (V4)F:. 

Their initial values differ (F:,, = 1, F$o, = F$o, = 0; Ff,, = (1 + h)/2, 
Fl aw = (1 - X)/2, F,‘w = 0) and lead to the following solutions for h # 0: 

1 
Ft,, = ~ 

4-33h + 
1-A 

(4 - 3Wl - r2) 
{( 1 - x + 3rJ r; - (1 - h + 3r.J r:>, 

1-A 
F:(t) = 4 _ 3h + (4 - :& 12) 

{( 1 - YI) r; - (1 - r2) r:>, 

2(1 - A) 
Fh = 4 - 3A 

1-A 
- (4 - 3h)(Y, - T2) 

((2 - h + 2YJY: - (2 - x + 2r,)r;}, 

where r, = )(A + (A(4 + A))‘/“), r2 = )(A - (A(4 + A))‘/“). For X = 0; 

%, =%, = a, F&,, = 4 for t > 2. There are twice as many (8) gametes in 
the class for Fbl as for Fal so that all recombinant gametes have the same final 
frequency. The two classes of recombinant gametes do differ in frequencies in 
the early stages of descension. 
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