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Abstract
This thesis investigates a data-driven fast simulation algorithm for pion showers in a
highly granular calorimeter. The dataset has been recorded in a test beam campaign at
Cern in 2018 with the Ahcal Technological Prototype of the Calice Collaboration.
The Ahcal was exposed to electron, muon and pion beams of di!erent energies during
the test beam run. For this thesis, the entire pion shower dataset has been used.

The algorithm is based on ordering the calorimeter cells of the Ahcal in ascending
order based on their distance to the centre of gravity of the pion shower. This assigns
a higher importance during simulation to tiles in proximity of the centres of gravity,
where on average more energy is deposited. The data-driven simulation is conducted
with Kernel Density Estimators on hit energy level. As Kernel Density Estimators face
computational limitations, the entire number of calorimeter tiles has not been used in
the simulation. Instead, certain tiles and layers have been excluded for the simulation,
in order to reduce input data, while keeping the information loss as minimal as possible.
To account for the missing energy, Gaussian noise is added to the missing tiles and layers
afterwards. The performance of this method has been evaluated based on shower shape
variables that characterise a hadron shower. The results showed good agreement between
the distributions of the full datasets and simulation.

Zusammenfassung
Diese Arbeit untersucht einen datenbasierten Algorithmus für eine schnelle Simulation
von Hadronenschauern in einem hochgranularen Kalorimeter. Die Daten wurden wäh-
rend einer Teststrahlkampagne am Cern im Jahr 2018 mit dem Ahcal der Calice
Kollaboration aufgenommen. Während diese Kampagne wurde der Ahcal Elektronen-,
Myonen- und Pionenstrahlen mit verschiedenen Energien ausgesetzt. Für diese Arbeit
wurden die Pionenstrahldaten genutzt.

Der Ansatz basiert auf der Sortierung der Kalorimeterzellen in aufsteigender Reihen-
folge nach ihrer Entfernung zum Schauerschwerpunkt. Dadurch erhalten Kacheln in un-
mittelbarer Nähe des Schwerpunkts ein höheres Gewicht, da hier im Mittel mehr Energie
deponiert wird. Die datenbasierte Simulation erfolgt mithilfe von Kerneldichteschätzern
auf Kachelniveau. Aufgrund von technischen Einschränkungen der Kerneldichteschätzer
konnten jedoch nicht alle Kalorimeterkacheln in der Simulation betrachtet werden. Da-
her wurden in der Simulation verschiedene Kacheln und Detektorschichten ausgeschlossen,
was zu einem geringeren Energiegehalt in der Simulation führt. Um die fehlende Ener-
gie auszugleichen, wird für die nicht berücksichtigten Kacheln und Schichten zusätzlich
gaußsches Rauschen hinzugefügt.

Die Leistungsfähigkeit dieser Methode wurde anhand von Schauerformvariablen bewer-
tet, die die Eigenschaften von Hadronenschauern charakterisieren. Die Ergebnisse zeigen
gute Übereinstimmung zwischen den Verteilungen der Datensätze und der Simulation.
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1. Introduction

The Standard Model (SM) of particle physics [1–4] serves as the foundational framework
for understanding the universe, providing insight into the physics of fundamental particles
and forces of nature. For centuries, the quest to uncover the underlying structure of the
universe has been a central driving force in physics, leading to the formulation of the SM,
which remains the most successful and comprehensive theory in the field until this day.

Major research facilities worldwide, including Cern and its Large Hadron Collider
(Lhc) [5] in Geneva, and the development of sophisticated detectors, and numerous ex-
perimental discoveries have greatly advanced our understanding of particle physics and
the universe.

General-purpose detectors, such as the Atlas [6] and Cms [7] detectors at the Lhc,
are built on the same principle: particles are accelerated and via their collisions, other
particles are produced. Most of these decay before reaching the detector and the decay
products are detected via the interaction with the experimental apparatus, where dif-
ferent components measure the properties of the particles, such as charge, momentum
or energy. These are used to reconstruct the original particle. One of the most crucial
components is the calorimeter, responsible for measuring the energy deposited by parti-
cles as they pass through its layers. Within calorimeters, high-energy particle cascades
develop, known as showers, through the interaction with the detector material. Particle
showers develop when a particle interacts with the detector material, deposits energy, and
creates secondary particles, which in turn also deposit energy leading to the cascade of
particles. This energy deposition can be read out via electrical signals, providing valuable
information about the nature of the particle and its interactions.

Experimental research aims to put theoretical models to the test, and the SM has proven
to be remarkably successful in explaining a wide range of physical phenomena. However,
it also remains incomplete. Current research tries to extend the SM by searching for new
particles and forces that may o!er insights into unresolved questions, such as what dark
matter is [8], why neutrinos have masses [9], and the unification of all fundamental forces,
including gravity [10, 11]. To address these challenges, more advanced detectors and,
consequently, more sophisticated calorimeters are required. The Calice Collaboration,
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1. Introduction

now integrated into the six taskforce of the Detector Research and Development (DRD6)
Collaboration, is developing highly granular calorimeters. This thesis focuses on the
Ahcal prototype [12], which is a highly granular calorimeter prototype developed by the
Calice collaboration.

In order to verify or falsify extensions to the SM, it is necessary to simulate the inter-
actions of particles with the detector material. This allows the hypothesis to be accepted
or rejected, thereby providing insight into physics beyond the SM. The simulation process
of particle showers has the potential to require a significant amount of computational
resources, which could make it challenging to manage. Thus, this Master’s thesis focuses
on a fast simulation algorithm for particle showers through a data-driven method based
on Kernel Density Estimators (KDEs) [13].

Chapter 2 provides an introduction to the SM of particle physics, followed by Chap-
ter 3, which briefly summarises the theory of energy loss of charged particles in matter.
Chapter 4 o!ers a brief overview of the theory behind particle showers and the compo-
sition of calorimeters. Chapter 5 introduces the Calice Collaboration and DRD6 and
describes the Ahcal prototype, while also giving an outlook on future high-energy collid-
ers. The fast simulation using KDEs is discussed in Chapter 6, while Chapter 7 presents
the cell-ordering algorithm for the fast simulation based on centres of gravity (CoGs).
The performance of this algorithm is determined by the distributions of di!erent shower
shape variables, as discussed in Chapter 8. Lastly, Chapter 9 extends the investigation to
datasets of varying pion energies. Finally, a summary and outlook are given in Chapter
10.
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2. Standard Model of Particle
Physics

The SM of particle physics is a well-established theoretical framework that consists of the
fundamental particles of nature and their interactions; it describes the elementary particles
that constitute matter and the force-carrier particles that mediate their interactions.
These are shown in Figure 2.1. Of all four fundamental forces, the strong, weak or
electromagnetic forces are incorporated into the SM. The known particles are categorised
into two classes based on their fundamental properties: fermions, which have half-integer
spin (1/2), and bosons, which have integer spin (1 or 0). Fermions are the building blocks
of matter and are further divided into two groups: quarks and leptons. Moreover, each
particle has a corresponding anti-particle with opposite charge [14, 15].

The quarks are classified by their electric charge and arranged into three generations.
The up, charm, and top quark each have an electric charge of +2/3 (in units of the elemen-
tary charge e), while the down, strange, and bottom quark have a charge of →1/3. Each
generation contains one up-type and one down-type quark: the up and down quarks form
the first generation, charm and strange form the second, and top and bottom complete
the third. Of the three quark generations, only the first is stable. The heavier quarks
in the second and third generations undergo decay, as transitioning into lighter quarks is
energetically allowed [14, 15].

Leptons are similarly divided into three generations. The electron (e→), muon (µ→)
and tau lepton (ω→), each carry an electric charge of →1. They are associated with
neutrinos, which are electrically neutral. Each charged lepton forms a generation with
its corresponding neutrino (εe, εµ and εω ), in a manner analogous to the quark sector
[14, 15].

The force-carrying bosons (spin-1 particles) mediate three of the four known fundamen-
tal forces and the interactions between fermions are described by the exchange of gauge
bosons. The electromagnetic force, which acts on all particles with electric charge, is
mediated by the electrically neutral photon (ϑ) [14, 15].

The gluon (g) is the mediator of the strong nuclear force, binding quarks together within

3



2. Standard Model of Particle Physics

hadrons. Quarks are the only fermions that possess colour charge (red, green, or blue),
and thus, can interact via the strong force. Anti-quarks carry anti-colour.

three generations of matter
(fermions)

I II III

interactions / forces
(bosons)

mass
charge

spin u
up

↑ 2.16 MeV
+2/3
1/2 c

charm

↑ 1.27 GeV
+2/3
1/2 t

top

↑ 172.57 GeV
+2/3
1/2

d
down

↑ 4.70 MeV
→1/3
1/2 s

strange

↑ 93.5 MeV
→1/3
1/2 b

bottom

↑ 4.18 GeV
→1/3
1/2

Q
U

A
R

K
S

e
electron

↑ 0.511 MeV
→1
1/2 µ

muon

↑ 105.66 MeV
→1
1/2 ω

tau

↑ 1.78 GeV
→1
1/2

εe
electron
neutrino

< 1.0 eV
0
1/2 εµ

muon
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0
1/2 εω

tau
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< 18.2 MeV
0
1/2

LE
P

T
O

N
S

g
gluon

0
0
1

ϑ

photon

0
0
1

W
W boson

↑ 80.37 GeV
±1
1

Z
Z boson

↑ 91.19 GeV
0
1

G
A

U
G

E
B

O
SO

N
S

H
Higgs

↑ 125.20 GeV
0
0

SC
A

LA
R

B
O

SO
N

S
Figure 2.1.: The particles of the SM of particle physics, taken from Ref. [16] and

modified. The mass, electric charge, and spin values are taken from Ref.
[17].

Quarks combine in groups to form particles called hadrons. Hadrons are further clas-
sified into baryons, such as protons and neutrons, which are made of three quarks, and
mesons, which consist of a quark-antiquark pair. Free quarks have never been observed, a
phenomenon explained by colour confinement, which states that particles with a non-zero
colour charge cannot exist independently. Instead, quarks are always confined to colour-
neutral states. Hadrons are held together by gluon exchange between quarks. Gluons
are also carriers of colour charge, enabling them to interact with each other through the
strong force. This interaction creates a confined colour field between the quarks, form-
ing a tube-like structure. Unlike the electromagnetic field, which spreads out in space,
the colour field remains concentrated. This confinement results in a potential that scales
linearly with the distance between the quarks, preventing their separation and ensuring
they only exist in bound states. Hadronisation then occurs when quarks are pulled apart,
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and the energy stored in the colour field between them becomes large enough to create
new quark-antiquark pairs. These new quarks combine with the original quarks to form
colour-neutral bound states known as hadrons. This process leads to the production of
multiple hadrons, which manifest as collections of particles called jets that can be detected
in experiments [18, 19].

All elementary particles in the SM possess the weak charge, allowing them to inter-
act through the weak force, which is mediated by the W ± and Z bosons. The W ± is
the mediator for flavour changing charged processes. Transitions between up- and down-
type quarks and vice versa are therefore allowed as long as a W ± is exchanged between
them. However, the transition between quark generations is suppressed and transitions
within one generation are more favoured. This mechanism is described by the Cabibbo-
Mechanism [20] and the Cabibbo-Kobayashi-Maskawa (CKM) [21] matrix. Furthermore,
flavour-changing neutral currents are not a feature of the SM, at leading order. Conse-
quently, flavour change involving the Z boson is prohibited, at leading order. In addition,
due to the conservation of lepton number per generation in the SM, only leptons within the
same generation couple to each other via the emission or absorption of a W ± [14, 15, 22].

The final piece of the SM was the discovery of the Higgs boson (spin-0 particle) in 2012
by the Atlas and Cms Collaborations [23, 24], a particle whose existence had already
been predicted in 1964 [25–27]. The Higgs boson is central to the Higgs mechanism, which
explains how particles acquire mass. The Higgs potential,

V (ϖ) = µ2(ϖ†ϖ) + ϱ(ϖ†ϖ)2, (2.1)

with µ2 < 0, results in a degenerate vacuum state with a non-zero vacuum expectation
value [25–28]. This leads to spontaneous symmetry breaking, and in combination with the
unification of the electromagnetic and weak force, particles interact with the Higgs field
and acquire mass. Without this mechanism, particles would remain massless, resolving
a key discrepancy between theoretical predictions and observed non-zero particle masses
[25–28].

In quantum field theory, the underlying gauge symmetry of the SM is described by
three groups:

SU(3)
C

↓ SU(2)
L

↓ U(1)
Y

, (2.2)

where the SU(3) group governs the strong interaction between quarks via gluons and
SU(2)

L
↓ U(1)

Y
governs the electroweak interaction - the unification of the weak in-

teraction with the SU(2)
L

and the U(1)
Y

group that accounts for the electromagnetic
interaction. The indices represent the charges and symmetries associated with each group
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2. Standard Model of Particle Physics

[1–4].
The SM provides a comprehensive description of the current state of knowledge in the

field of particle physics. However, it is important to acknowledge that the SM is not
capable of addressing all research questions, such as the nature of dark matter [8] and
the observed imbalance between matter and antimatter in the universe [29, 30]. Current
research e!orts focus on developing novel theories or extending the SM to resolve these
issues.
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3. Energy Loss of Charged Particles
in Matter

The detection of particles traversing a medium relies on their interactions with the ma-
terial, where the probability of an interaction occurring is quantified by the cross-section
ς, representing the e!ective area of a target atom or particle that a traversing particle
encounters during propagation. The utilisation of diverse processes between the particle
and the medium facilitates the identification of the specific particle type and its associated
properties [31, 32].

When an electrically charged particle traverses a medium and interacts with it, the
material atoms can be ionised or excited. The interaction between the traversing charged
particle and the electrons and nucleus of the atoms leads to a signal that can be measured
and used for further analysis. During the ionisation and excitation processes, energy is
lost, leaving the charged particle with a reduced energy level after the interaction. If the
particle is heavier than an electron (or positron), the average energy loss per unit length
is characterised via the Bethe-Bloch equation [31, 32]

→

〈
dE

dx

〉

= K
Z

A
φ

z2

↼2

[
1
2 ln

(
2mec2↼2ϑ2↽max

I2

)

→ ↼2
→

⇀(↼ϑ)
2

]

, (3.1)

which was proposed by Hans Bethe in 1930 [33, 34] and Felix Bloch in 1933 [35, 36]. The
individual components are as follows [31]:

• K = 4⇁NAr2
e
mec2 = 0.307 MeV cm2 mol→1 is a constant. NA is the Avogadro con-

stant, re the classical electron radius, me the electron mass and c the speed of light
in vacuum.

• z is the electric charge of the propagating particle and ↼ = v/c its relativistic
velocity.

• Z is the atomic number, A the atomic mass, and φ is the density of the medium.

• I is the average energy that is needed to ionise the medium.
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3. Energy Loss of Charged Particles in Matter

• ↽max = 2mec2↼2ϑ2/
(
1 + 2ϑme/M + (me/M)2)

is defined as the maximal energy
that is deposited via a central collision between the particle and a shell electron.

• ⇀(↼ϑ) describes a density correction that appears for high energies.

The equation above describes the stopping power of a medium on particles traversing
it and is shown in Figure 3.1. Below ↼ϑ ↔ 0.05, the e!ects of shell corrections must be

Figure 3.1.: The Bethe-Bloch equation (3.1) for µ+ in copper as a function of ↼ϑ [17].

taken into account, resulting in a maximum in the energy loss distribution. Subsequently
after the maximum, the 1/↼2-term of Equation (3.1) dominates, resulting in a decrease of
energy deposition until a minimum is reached at intermediate energies around ↼ϑ ↔ 3→4.
A particle falling in this region is described as a minimum ionising particle (MIP), as the
energy loss of the particle is reduced to a minimum. In the case of particles with en-
ergies exceeding the minimum, the energy deposition increases in accordance with the
logarithmic term in the Bethe-Bloch equation until the value of ↼ϑ approaches approx-
imately 1000. Thereafter, radiation e!ects begin to dominate. The density correction
⇀(↼ϑ) of the Bethe-Bloch equation dominates at larger energies and limits the energy loss
of particles. This correction originates from the shielding of the transversal component
of the electrical field of the propagating particle. As the particle’s energy increases, its
electric field flattens and extends, leading to the polarisation of the medium. This results

8



in the subsequent limitation of the electric field extension. Consequently, the impact of
the logarithmic-term is diminished, leading to a reduction in energy loss [31, 32].

Electrons and positrons must be considered individually due to their di!erences to
heavier particles in interactions with a medium, and are discussed in Chapter 4.1.
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4. Particle Showers in Calorimeters

The various components of particle detectors exploit a range of particle properties to fa-
cilitate detection. To quantify the energy deposition of particles, calorimeters are utilised
to investigate so-called particle showers. The theory of shower processes and development
distinguishes between electromagnetic (EM) and hadronic showers due to the di!erent na-
ture of electromagnetically and hadronically interacting particles with material. Chapter
4.1 explores the characteristics of EM showers, while Chapter 4.2 focuses on the properties
of hadronic showers.

4.1. Electromagnetic (EM) Showers

4.1.1. Physics of Electromagnetic Showers

EM showers are created via the interaction of high-energetic electrons, positrons and
photons with matter. These particles deposit their energy within the material, resulting
in the loss of energy of the initial particle. The processes that drive EM shower creation at
high energies at leading order are: pair production and Bremsstrahlung. Pair production
is conversion of a photon into an electron-positron pair. Bremsstrahlung, on the other
hand, is the emission of photons in the field of a nucleus by charged leptons. These
processes are depicted in Figure 4.1(a), and it can be assumed that energy loss per unit
length via ionisation is negligible as long as the energy per particle is above the critical
energy, Ecrit. The energy loss associated with bremsstrahlung is directly proportional to
the inverse square of the particle’s mass and scales linearly with the energy,

(
dE

dx

)

Bremsstrahlung
↗ Z2 E

M2 , (4.1)

with Z being the material’s atomic number and M the incoming particle’s mass [31].
Therefore, the energy loss due to the bremsstrahlung process depends heavily on the
material, the particle’s energy and mass. As the mass of the particle decreases, the
energy loss increases. Additionally, greater energy deposition occurs in denser materials.
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4. Particle Showers in Calorimeters

Moreover, the energy loss resulting from multi-scattering processes, i.e. Bhabha- [37] and
Møller-scattering [38], is disregarded in this simplified model [15, 31, 39].

(a) The processes pair production (top)

and bremstrahlung (bottom) [31].

(b) The simplified model of the develop-

ment of an EM shower [14].

Figure 4.1.: (a) The two processes that mainly drive EM creation in the simplified model
of an EM shower, and (b) a sketch of an EM shower in the calorimeter.

The combination of pair production and bremstrahlung gives rise to EM showers, leav-
ing a cascade in the calorimeter as shown in Figure 4.1(b). Bremsstrahlung dominates in
the high-energy-regime, with pair production also being dominant in the high MeV- and
GeV-region. The characteristic length of a shower is the radiation length X0, which is
inversely proportional to the square of the atomic number of the material (Ref. [31]):

X0 ↗
1

Z2 . (4.2)

Additionally, the initial energy E0 of the particle initiating the EM shower plays a cru-
cial role in describing its development. Once a particle has traversed a distance x, the
remaining energy of the particle is given by

E(x) = E0 · e→ x
X0 , (4.3)

with E0 being the initial energy, and the radiation length X0 being the mean free path
of a particle in an EM calorimeter [31]. Thus, on average, a particle only possesses 1/e

of the initial energy after a path length of x = X0. The number of particles, N , doubles
approximately after every radiation length and the total number of particles in the shower
after traversing n ↘ N radiation lengths is given by (Ref. [31])

N ↔ 2n. (4.4)

12



4.1. Electromagnetic (EM) Showers

The mean energy of a particle after n radiation lengths can therefore be determined to
be (Ref. [31])

≃E⇐ = E0
2n

. (4.5)

The development of a EM shower stops when the particle’s energy has fallen below a
threshold of

Ecrit = E0
2ntotal

(4.6)

after ntotal radiation lengths [31]. Upon reaching this threshold, ionisation becomes the
dominant mechanism for energy loss. The total number of particles after ntotal radiation
lengths is then given by the fraction of the initial energy to critical energy (Ref. [31]):

ntotal = ln (E0/Ecrit)
ln (2) . (4.7)

Hence, the total length stotal of an EM shower can be determined to be

stotal = ntotal · X0 = ln (E0/Ecrit)
ln (2) · X0, (4.8)

which states that the longitudinal size of an EM shower increases logarithmically with
the initial energy, leading to only a logarithmic increase in size of an EM calorimeter as
the energy increases [31]. It can be concluded that the use of a thick EM calorimeter is
not necessary at high particle energies.

4.1.2. Longitudinal and Radial Shower Profiles of
Electromagnetic Showers

The characteristics of an EM shower are described by its longitudinal and radial shower
profiles. The longitudinal shower profile is defined as the energy deposition along the
shower axis. It is characterised by the gradual build-up of energy deposition until it has
reached its maximum in the calorimeter. Thereafter, the energy deposition falls quickly
in the last regions of the calorimeter. The radial shower shape of EM showers describes
the lateral spread of energy loss of electrons, positrons and photons in the calorimeter.
Thus, the study of EM shower development in the longitudinal and radial direction is
crucial for understanding their formation and development.

13



4. Particle Showers in Calorimeters

Longitudinal Shower Profile

The longitudinal shower development of an EM shower can be described via

dE

dn
= E0

ba

!(a)na→1e→bn, (4.9)

which was proposed by Longo and Sestili in 1975 [40], with the parameters a and b, the
initial energy E0 and the material’s atomic number Z. ! (a) =

↑∫

0
ta→1e→tdt [41] describes

the gamma function. The maximum of this function lies at (Ref. [31])

nmax = a → 1
b

. (4.10)

Longitudinal shower profiles for di!erent materials are shown in Figure 4.2(a), with
Equation (4.9) fitted to the simulation. The peaks of the simulated longitudinal energy
distributions are observed at greater penetration depths for materials with larger atomic
numbers. Furthermore, as indicated by Equation (4.2), the radiation length X0 is smaller
for denser materials. In addition, di!erences in the critical energy of the shown materials
lead to di!erent shower developments.

(a) The longitudinal energy distribution

for EM showers for di!erent materials

[31]. The showers are calculated from

10 GeV electrons.

(b) The longitudinal energy distribution

for EM showers for di!erent energies,

detected in PbWO4 [31].

Figure 4.2.: The longitudinal energy distributions of EM showers. Here, t denotes the
number of radiation lengths.

Table 4.1 lists the parameters for the development of EM showers for four materials.
The larger the atomic number of the material is, the smaller the radiation length X0 and
critical energy Ecrit of a particle traversing the medium. The parameter b from Equation

14



4.1. Electromagnetic (EM) Showers

(4.10) decreases likewise in denser material and is responsible for the decrease of the energy
deposition after the maximum energy deposition is reached. Furthermore, as the material
density increases, the maximum energy deposition occurs deeper within the calorimeter,
here shown for 100 GeV, and it goes along with a decreasing value for the parameter b

as nmax increases. Table 4.1 also shows the number of radiation lengths n98 % for each
material, in which 98 % of the initial energy is deposited [31]. Also, a more energetic
beam leads to more energy deposited in the outer region of the calorimeter, as shown in
Figure 4.2(b).

Table 4.1.: Properties of EM showers in di!erent materials [31].
Material Z X0 (mm) Ecrit (MeV) b nmax (100 GeV) n98% (100 GeV)

H2O 1, 8 361 78.6 0.63 6.6 17.3
Al 13 89 42.7 0.58 7.3 18.8
Fe 26 17.6 21.7 0.53 7.9 20.6
Pb 82 5.6 7.4 0.50 9.0 22.7

Radial Shower Profile

The particles produced via the two dominant processes in the calorimeter are mostly
emitted in forward direction for high energies. The angle θ at which the particles are
emitted increases inversely with energy (Ref. [31]):

θ ↗
1
E

. (4.11)

Therefore, the lateral expansion of the shower is mainly dominated by Compton scattering
of low-energy photons and multiple scattering of low-energy electrons/positrons. On
average, approximately 90 % of the energy is deposited in a cone with radius

φM = 21.2 MeV
Ecrit

· X0, (4.12)

also known as Molière radius, which depends on the critical energy and the radiation
length of the material [31]. Approximately 90 % of the energy is deposited within a
cylinder with a radius of one Molière radius φM , while 95 % of the deposited energy is
deposited in a cylinder of twice the radius.

The combination of Equations (4.2) and (4.12) results in an increase in the ratio RM/X0

with the atomic number of the detector material, and thus, resulting in narrower EM
showers in low-Z materials than for materials with a large atomic number. However, the
Molière radius itself becomes smaller for heavy detector materials. Table 4.2 shows the
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4. Particle Showers in Calorimeters

Molière radius and the ratio RM/X0 for four di!erent materials [31]. Figure 4.3 shows the
radial shower shape for a brass-fiber dual-readout calorimeter, measured separately with
"erenkov and the scintillation signals. From Figure 4.3(a), it can be determined that the
farther one is from the shower axis, the less energy will be deposited. Consequently, the
majority of the energy will be deposited in the vicinity of the shower axis, with the outer
regions of the calorimeter layers exhibiting almost no deposited energy. Figure 4.3(b)
illustrates the percentage of the deposited energy as a function of the cylinder radius.
The cylinder is drawn around the shower axis. It can be observed that, as the radius
increases, the energy deposited in this region also increases. However, the gradients of
the curves decrease, also indicating a reduction in energy deposition for larger cylinder
radii.

Table 4.2.: The Molière radius and the ratio RM/X0 for four di!erent materials [31].
Material Z RM (mm) RM

X0
H2O 1, 8 83 0.23
Al 13 45 0.51
Fe 26 18 1.02
Pb 82 16 2.86

(a) (b)

Figure 4.3.: The radial development of EM showers in a brass-fiber dual-readout
calorimeter, measured separately with the "erenkov and the scintillation
signals [42]. Deposited energy as a function of the (a) distance to the
shower axis in mm and (b) radius of the cylinder around the shower axis
in mm.
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4.2. Hadronic Showers

4.2. Hadronic Showers

4.2.1. Physics of Hadronic Showers

Particle showers generated by hadrons di!er from EM showers in that the underlying
processes are more complex. The two processes that drive the expansion of hadronic
showers are shown in Figure 4.4.

A high-energetic incoming hadron initially undergoes an inelastic interaction with a
nucleus, resulting in the generation of high-energetic particles within the nucleus. An
intra-nuclear cascade of particles, such as neutral and charged pions, kaons, protons, and
other hadrons, occurs. Subsequently, these particles are able to escape the nucleus if they
possess su#cient energy. Thereafter, they undergo inelastic scattering with other nuclei
in a similar manner, which results in the formation of further secondary particles. This
process gives rise to the formation of a cascade of particles within the hadronic calorimeter.
In these interactions, only one nucleon within the nucleus is involved, while the remaining
nucleons remain una!ected. As a consequence, the nucleus will become excited. The
process known as spallation involves the emission of energy through the release of highly
energetic fragments, including protons, neutrons, kaons, and pions. Neutral pions decay
into two photons after ⇒ 10→16 s, which triggers EM showers within the larger hadronic
shower. Spallation begins approximately 10→22 s seconds after the initial collision and
continues until the threshold for inelastic scattering is reached or the particles produced
exit the nucleus, which leaves the nucleus in an excited state. The emitted spallation
particles typically have kinetic energies around 100 MeV. Additionally, hadrons produced
within the nucleus may scatter o! spectator nucleons, further exciting the nucleus to an
even higher energetic state [31, 32, 39].

Approximately 10→18 seconds after spallation, the excited nucleus releases its energy
by emitting low-energy nucleons and fragments, such as protons, neutrons, α-particles,
and photons. This phenomenon is known as evaporation. Additionally, the nucleus
may also undergo nuclear fission, which leads to the formation of two or more lighter
fragments, often with additional neutron or photon emission. The energy spectrum of
particles generated during evaporation is significantly lower than that of the spallation
process, typically falling within the MeV range [31].

A part of the energy is absorbed and required for breaking up nuclei. This is referred
to as invisible energy, as this type of energy is not available for other processes and
not assigned to the energy of the shower. It is estimated that up to 40 % of total non-
EM energy remains undetected. Furthermore, the neutrinos in these processes escape
detection, and consequently, their energy is not measured either [31, 32, 39].
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4. Particle Showers in Calorimeters

Figure 4.4.: The processes of spallation (top), and evaporation (bottom) [31].

EM Subshowers in Hadronic Showers

As previously stated, EM showers develop inside hadronic showers due to the presence
of neutral pions in the cascade, as illustrated in the spallation process in Figure 4.4.
Furthermore, hadronic showers are subject to large fluctuations in energy deposition, as
a variety of components contribute to the hadronic factor fhad (Ref. [31]):

Edep = (fEM + fhad) E0 with 0 ⇑ fhad, fEM ⇑ 1 and fEM = 1 → fhad. (4.13)

The factors fEM and fhad determine the EM and hadronic energy fractions of the shower,
respectively. The EM term is mainly dominated by neutral pion decay and varies strongly
from shower to shower. In the equation above, fhad describes the energy loss via ionisation,
through neutrons, via the emission of photons, and the invisible energy [31].

The distributions for the EM and hadronic term in Equation (4.13) di!er. The calorime-
ter signal S(⇁) initiated by a hadron can be described via

S(⇁) = (fEM↽EM + fhad↽had) E, (4.14)

where the signal e#ciencies ↽i (i = EM or hadron) stem from the imperfectness of the
detector [31]. The ratio of the EM and hadronic signal can be expressed using

S(e)
S(⇁) = ↽EMEe

(↽EM + fhad↽had) Eε

Ee=Eω= ↽EM/↽had

1 → fEM
(
1 →

ϑEM
ϑhad

) , (4.15)
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4.2. Hadronic Showers

with the signals S(e) and S(⇁) for the EM and hadronic term and ↽EM and ↽had for the
respective signal e#ciencies [31]. Figure 4.5(a) shows that the signal of the hadronic
component of the shower varies significantly, spreading over a wide range, while the EM
component features a distinct peak. The assumption of equal energy for electrons and
pions is used to compare the calorimeter response for electrons and pions as Equation
(4.15) corresponds to the ratio of response of a calorimeter to EM showers to the hadronic
part, also written as e/⇁. The fraction ↽EM/↽had in the equation above, denoted as
e/h, describes the ratio of the calorimeter’s EM to hadronic e#ciency. In general, a
calorimeter’s response is characterised by its e#ciency in converting deposited energy
into a measurable signal [31, 32, 43].

Typically, the response to hadron showers is lower than that for EM showers, mean-
ing e/h > 1. This discrepancy arises primarily from significant fluctuations in energy
deposition and mainly from the presence of invisible energy in hadronic showers. The
entire energy of photons emitted from ⇁0-decay is deposited and is measurable, whereas
a substantial fraction of the total energy from the non-EM shower remains undetected.
Calorimeters with such ratios are called non-compensating calorimeters. On the other
hand, if e/h = 1, the calorimeter is referred to as compensating [31, 32, 43].

(a) (b)

Figure 4.5.: (a) The calorimeter response for the EM component in hadronic showers
(mainly driven by neutral pion decay) and the pure hadronic shower from
Equation (4.14) and (4.15) [31]. (b) The EM fraction fEM generated by
150 GeV pions, measured using a lead-based calorimeter [44].

Equation (4.15) highlights the critical role of fEM in determining the behaviour of
hadronic signals. Since a hadronic shower can produce a countless number of neutral pions
as long as energy is conserved, the value of fEM is not fixed and can vary continuously
between zero and one, and since the EM fraction fEM depends on the energy, the value of
e/⇁ too. The typical distribution of the electromagnetic signal fraction is shown in Figure
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4. Particle Showers in Calorimeters

4.5(b). The measurement was performed using 150 GeV pions in a lead (Pb)-calorimeter.
The fEM distribution lacks a distinct, well-defined peak and is instead widely spread out.
This broad distribution leads to unbounded behaviour in fEM, causing fluctuations in the
signal ratio, which leads to e/⇁ > 1 [31, 32, 43, 44].

However, an average value of fEM can be calculated. The fraction fEM rises in accor-
dance with the photon multiplicity:

≃fEM⇐ ↔ 1 →

(
E

E0

)k→1
, (4.16)

with the energy E0 representing the average energy required to produce a hadron, which
is material-dependent [31]. The parameter k accounts for the particle multiplicity and is
approximated to k ↔ 0.82. Therefore, for larger energies E, the average EM fraction in
hadronic showers increases [31]. Figure 4.6(a) illustrates the development of ≃fEM⇐ as a
function of pion energy in two di!erent calorimeters. The increase of the value of ≃fEM⇐

with the pion energy is clearly observable [31, 44]. Figure 4.6(b) shows the calorimeter
response e/⇁ as a function of the energy and e/h with E0 = 1 GeV and k = 0.82. It is
clearly visible that, at larger energies, the response e/⇁ approaches unity asymptotically
and is independent of the energy and the ratio of response between EM showers and
non-EM showers due to the increase of the EM fraction in a hadronic shower [31, 43].

(a) (b)

Figure 4.6.: (a) The average EM fraction ≃fEM⇐ as a function of the pion energy using
a copper- and lead-calorimeter. The data is fitted with Equation (4.16)
[44]. (b) The ratio of calorimeter response e/⇁ as a function of energy and
the response-ratio e/h for E = 1 GeV and k = 0.82 [43]. With increasing
energy, e/⇁ approaches one.
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4.2.2. Longitudinal and Radial Shower Profiles of Hadronic
Showers

Similar to EM showers, the size of hadronic showers is determined by their longitudinal and
lateral extent. As mentioned in the previous chapter, EM showers develop within hadronic
showers as a result of neutral pion decay into two photons. Therefore, the contribution
of EM showers must be carefully considered when analysing the overall hadronic shower
development.

Longitudinal Shower Profile

The characteristic length of hadronic showers can be described via one parameter, the
nuclear absorption length

ϱa ↔ 35 g

cm2
A

1
3

φ
, (4.17)

where A is the atomic weight of the detector material and φ its density [31]. The remaining
energy E(x) of a particle after traversing a distance x can be described analogously to
Equation (4.3), with the radiation length X0 for an EM shower replaced by the nuclear
absorption length ϱa of a hadronic shower.

Table 4.3 shows the nuclear absorption length and radiation length for some materials,
along with the material’s properties. The ratio of nuclear absorption length to radiation
length increases with larger atomic weight and density and is approximately proportional
to the atomic number of the material (Ref. [31]):

ϱa

X0
↔ 0.37Z. (4.18)

This leads to the conclusion that hadronic showers are larger than EM showers, and thus,
hadronic calorimeters are, on average, larger than EM calorimeters. Figure 4.7 compares
the size of an EM and a hadronic shower in a simulation for a 100 GeV electron and
pion in an iron block. The figure demonstrates the significant size di!erence between the
two shower types. EM showers are drastically shorter than showers initiated by hadrons.
The EM shower in this simulation only covers approximately one-third of the iron block,
whereas energy is deposited even at the end of the iron block for the hadronic shower. A
notable parallel between hadronic and EM showers is that their sizes increase with the
logarithm of energy, as stated in Equation (4.8) [31].
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Table 4.3.: Properties of materials for hadronic showers [31].
Material Z A (g/mol) ϖ (g/cm3) X0 (cm) ϱa (cm) ϱa/X0

H2O 1, 8 18 1.00 36.1 83.3 2.3
Air 7, 8 14.3 1.205 ↓ 10→3 3.0 · 104 7.5 ↓ 104 2.5
Al 13 27 2.70 8.9 39.8 4.5
Fe 26 56 7.87 1.76 16.8 9.5
Cu 29 64 8.96 1.43 15.3 10.7
W 74 184 19.30 0.35 9.9 28.3
Pb 82 207 11.35 0.56 17.6 31.4
U 92 238 18.95 0.32 11.0 34.4

Figure 4.7.: The size of an EM and hadronic shower [31]. The simulation was conducted
using a 100 GeV electron and pion in an iron block.

The change in energy along the shower axis can be parametrised as

dE

dz
= E0 ·



 fEM
!(αs)

·

(
z

↼s

)ϖs→1

·
e→ z

εs

↼s

+ fhad
!(αl)

·

(
z

↼l

)ϖl→1

·
e

→ z
εl

↼l



 , (4.19)

with the determination of the slope via αi and ↼i [45]. The first term accounts for the
shorter EM shower, while the second term accounts for the larger hadronic shower. Figure
4.8 shows the longitudinal energy distribution of hadronic showers for data using 80 GeV
pion and proton beams and the fitted Equation (4.19) with di!erent values for the param-
eters. The two plots demonstrate that the primary energy loss occurs at approximately
one nuclear absorption length. The tail of the distribution is dominated by the hadronic
term in the energy distribution. In contrast, the EM sub-shower, being the shorter com-
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ponent, demonstrates no deposited energy after approximately two nuclear absorption
lengths. This observation clearly indicates the di!erent sizes of the shower types.
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Figure 4.8.: Longitudinal energy distributions (measured in MIPs) of hadronic showers,
described by Equation (4.19), shown as a function of shower depth (in units
of nuclear absorption lengths, ϱl) [45]. The showers are initiated by 80 GeV
(a) ⇁+ and (b) protons. Additionally, the fitted data points are shown,
along with separate plots of the two components from Equation (4.19).

Radial Shower Profile

The nuclear absorption length is a measure not only of the longitudinal size of hadronic
showers, but also for the radial width of the shower. Deposited energy spreads in two
distinct patterns: a dense central region formed by electromagnetic sub-showers from
neutral pion decays and a more di!use outer region mainly influenced by neutrons. The
majority, about 95 %, remains confined within a cylindrical volume with radius (Ref. [31])

RM |95% ↔ ϱa. (4.20)

Similar to Equation (4.19), the radial parameterisation of the energy can be divided
into a core and halo part (Ref. [45]):

”E

”S
= Acore exp

(

→
r

↼core

)

+ Ahalo exp
(

→
r

↼halo

)

. (4.21)

It describes the energy density as a function of the radius r measured from the shower
axis. ”S represents the area of a ring with radius r and width ”r around the shower
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axis. The coe#cients Acore and Ahalo are scaling factors of the EM and non-EM part
of an entire hadronic shower, while the parameters ↼core and ↼halo determine the slope
of the function. Equation (4.21) is shown in Figure 4.9. The data has been obtained
from 30 GeV pions and protons and has been fitted according Equation (4.21). The first
term in the equation describes the EM subshower, while the second term represents the
hadron-induced shower. The EM subshower curve declines more steeply compared to the
hadronic shower, suggesting that EM subshowers are more confined radially than hadronic
showers, which can also be seen in Figure 4.7 [45].
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Figure 4.9.: Radial energy density distributions (measured in MIP mm→2) of hadronic
showers, described by Equation (4.21), shown as a radius from shower axis
(in mm) [45]. The showers are initiated by 30 GeV (a) ⇁+ and (b) protons.
Additionally, the fitted data points are displayed, along with separate plots
of the two components from Equation (4.21).

4.3. Construction of Calorimeters

4.3.1. Homogeneous and Sampling Calorimeters

In calorimeters, a distinction is made between a homogeneous calorimeter, where a
single medium is responsible for both shower development and signal registration, and a
sampling calorimeter, which uses two separate media, thereby decoupling the shower
development from the signal recording process. A sampling calorimeter typically contains
two types of layers: a passive medium, in which the shower develops, and an active
medium, which records the resulting electric signals. These passive and active layers are
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usually arranged alternately in the sampling calorimeter. Homogeneous calorimeters have
the advantage of delivering a better energy resolution than sampling calorimeters because
only a fraction of the deposited energy is measured through the active layers in a sampling
calorimeter, leading to sampling fluctuations, whereas the whole calorimeter volume of
homogeneous calorimeters can be used for readout.However, sampling calorimeters are
more compact, have a better particle identification due to the separation of shower devel-
opement and readout, and are more cost-e!ective [31, 39, 46]. A detailed description of
the construction of the Ahcal prototype is provided in Chapter 5.

4.3.2. Energy Resolution of Calorimeters

The main criteria for evaluating the performance of a calorimeter is its energy resolution,

ςE

E
= a

⇓
E

⇔
b

E
⇔ c, (4.22)

where ⇔ means addition in quadrature [31]. Stochastic fluctuations of the total number
of particles dominate the resolution for low energies and are considered in the first term.
Assuming that the total number of particles Ntotal follows a Poisson distribution and thus
possesses a standard deviation of

⇓
Ntotal, the resolution yields

ςE

E
↗

⇓
Ntotal

Ntotal
↗

1
⇓

Ntotal
↗

1
⇓

E
, (4.23)

since Ntotal ↗ E [31]. Hence, this results in an improvement in resolution for higher
energies [31]. The second term, represented by the factor b, accounts for electronic and
thermal noise or radioactivity. The constant term, c, reflects mechanical and electronic
irregularities of the calorimeter, as well as fluctuations caused by leakage. Figure 4.10
shows the relative energy resolution as a function of energy. Furthermore, the three terms
of the resolution are shown separately. At low energies, the stochastic and noise terms
dominate, whereas at high energies, the constant term is the primary factor in the relative
energy resolution, particularly in the tail of the distribution [31]. The falling energy
resolution makes calorimetry particularly attractive for high-energy physics experiments,
because the higher the energy, the better the energy resolution of the calorimeter.

4.3.3. Software Compensation for Calorimeters

The resolution of calorimeters can be enhanced by converting a non-compensating calorime-
ter into a compensating one, ensuring an equal response to both EM and hadronic show-
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Figure 4.10.: The relative energy resolution, ςE/E, and its three terms for calorimeters,
expressed as a function of the energy [31]. In this case, the parameters
are set to a = 0.11

⇓
GeV, b = 250 MeV, and c = 0.01.

ers, i.e. e/h ↖ 1. As mentioned in Chapter 4.2.1, the calorimeter’s response to purely
hadronic showers is generally lower than its response to electromagnetic (EM) showers,
leading to e/h > 1. To achieve compensation, and with that the improvement of the en-
ergy resolution, the response to hadronic showers must be increased and/or the response
to EM showers must be reduced. Two approaches can be considered: hardware or software
compensation. For hardware compensation, various constructions with di!erent materials
can be used to achieve the compensation, e.g. the passive material could have a higher
atomic number Z, as this reduces its sensitivity to the EM component. To enhance the
calorimeter’s response h to the hadronic component, sensitivity to neutrons or photons
could be increased as well [31, 47].

However, achieving a compensating calorimeter through construction constraints re-
quires careful material selection, often resulting in heavier and larger detectors, which in
turn leads to higher costs and also worsens the EM shower resolution [31, 47]. Software
compensation algorithms provide alternative methods for achieving calorimeter compensa-
tion. By correcting energy deposition, compensation can be achieved; however, it remains
approximate due to shower-to-shower fluctuations. On an event-to-event basis, weights
are applied to the energy deposition, ensuring that the response to EM and fully-hadronic-
driven showers are equal on average. Here, an approach for the Ahcal is presented [48].
The reconstructed energy Ei of an hit i is weighted via wϱi that depends on observables
θi, such as time of the hit:

ESC,i = Eiw(θi). (4.24)
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The weight w(θi) has the form of

w(θi) = a + bθ + cθ2, (4.25)

where the parameters a, b and c are determined from minimising the function

▷2 =


i

(Ei(a + bθi + cθ2
i
) → Ebeam,i)2

Ebeam,i
, (4.26)

with the beam energy Ebeam [48]. A slightly di!erent approach can be found in Ref. [49].
Additionally, machine learning techniques are also used to achieve compensation for a

calorimeter [48, 50].

27





5. CALICE Collaboration/DRD6
and the AHCAL Prototype

An overview of selected possible future high-energy physics experiments is given in Chap-
ter 5.1, along with an introduction to the Calice Collaboration and the Detector Research
and Development (DRD) Collaboration in Chapter 5.2. Lastly, Chapter 5.3 focuses on the
structure and properties of the Analogue Hadron Calorimeter (Ahcal), whose recorded
data was used in this thesis.

5.1. Possible High Energy Experiments in the
Post-LHC Era

With the Lhc reaching its limits, scientists are planning new high-energy experiments to
explore the mysteries of the universe. The High-Luminosity upgrade of the Lhc (HL-Lhc)
[51] is expected to be a major step towards answering open questions in (particle) physics.
The commissioning of the HL-Lhc will start around 2030. As more data is recorded, the
detectors must also be upgraded to withstand the increased flux of particles, as 200
proton-proton collisions will occur on average per bunch crossing at a collision energy of
E ↔ 14 TeV at the HL-Lhc [52]. Ongoing research focuses on developing and testing
detector components for future data collection, and besides the upgrade of the current
biggest particle accelerator, future projects are proposed and discussed, such as:

• Future Circular Collider (FCC): With a circumference of around 90 km, it would
be the largest (circular) particle accelerator that was ever built. The construction
would be scheduled to begin in the 2030s, with data collection starting in the 2040s.
Initially, it will operate as a lepton collider (electron-positron; FCC-ee). The FCC-ee
is planned to be replaced in the future by a hadron collider (proton-proton; FCC-hh),
designed to achieve a centre-of-mass energy of E = 100 TeV. The goal of the FCC
is to conduct sensitivity studies of the SM, overcoming current limitations caused
by the lower collision energy or lower luminosity at the Lhc [53, 54]. Research
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in the Higgs sector and precision measurements of extremely rare channels, such
as e+e→

↖ ZH, will particularly benefit from the lepton collider, and it will also
shine light to couplings between di!erent particles [53–55]. The hadron collider
FCC-hh focuses on the high-energy regime, providing insights into theories beyond
the SM, where yet-unobserved exotic particles with high masses could be produced.
Additionally, the FCC-hh could provide insight into the origin and structure of dark
matter [53, 54, 56].

• International Linear Collider (ILC): The International Linear e+e→-Collider
is proposed to be built in Japan, with a focus on high-precision measurements,
particularly of particle masses, particle couplings, and cross-sections. Contrary
to a hadron collider, where the interacting quarks within the hadrons carry only
a fraction of the hadron’s momentum, the collision energy of a lepton collider is
entirely available to the colliding leptons. Lepton colliders also provide cleaner
initial states with well-defined energies, allowing for more precise measurements
of fundamental particle properties and interactions [14]. Higgs physics, the Higgs
couplings to massive bosons, and in particular the Higgs self-coupling can be studied
at the ILC [57]. With a center-of-mass energy of E = 350 GeV, the ILC enters the
mass range of top-quark pairs, providing an opportunity to investigate top-quark
bound states. Moreover, the collider is designed to be upgradeable, ultimately
reaching a collision energy of up to 1 TeV [58, 59]. The special feature about the ILC
are the superconducting radio-frequency cavities for e#cient and stable acceleration
of the particle beams [58].

• Compact Linear Collider (CLIC): CLIC is a proposed linear e+e→-collider de-
signed to achieve collision energies of up to 3 TeV, surpassing the beam energy of the
ILC. A key objective of CLIC is the precise measurement of Higgs boson couplings
to other particles, which is essential for testing the SM. Furthermore, its wide en-
ergy range allows searching for new physics beyond the SM [59–61]. A fundamental
distinction between CLIC and the ILC lies in their acceleration mechanisms. While
the ILC would utilise superconducting radio-frequency cavities, CLIC would use a
two-beam acceleration technology. This enables a more compact accelerator design
while achieving higher collision energies [59–61].

As the requirements for new detectors are increasing due to the higher collision energies
and the increased particle flux, new detector components for future experiments must be
developed and tested.
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5.2. The CALICE and DRD6 Collaborations

As stated in Chapter 4, calorimeters are of great importance in particle physics experi-
ments, as they are used to measure the energy of particles generated in high-energy col-
lisions. This chapter introduces the Calice and DRD6 Collaborations, and the Ahcal
prototype, which is the calorimeter investigated in this analysis. Moreover, an overview
of silicon photomultipliers is given.

The Calice Collaboration focuses on the development of high-performance and highly
granular calorimeters. Calice is the abbreviation for Calorimeter for Linear Collider
Experiment. With around 300 physicists, the collaboration is split up in three primary
groups. The first group deals with EM calorimeters, the second with hadronic calorimeters
and the third group with a tail catcher/muon tracker (TCMT). For this report, the work
has been done in the hadronic section of the collaboration, namely with the Analogue
Hadron Calorimeter (Ahcal) group [12].

In 2024, the Calice Collaboration has become part of DRD6, which is the sixth task
force of the Detector Research and Development collaboration, that was formed due
to the European Committee for Future Accelerators (ECFA) roadmap [62]. The focus of
this part of DRD is the development of calorimeters, while the other sections focus on
gaseous, liquid and photon detectors, as well as semiconductors and particle identification.
A total of 135 research institutes from 27 countries are participating in DRD6 [62].

5.3. The AHCAL Prototype

The Ahcal is a sampling calorimeter, depicted in Figure 5.1(a), and consists of 38 active
layers. Its active layers are made of scintillator tiles, as shown in Figure 5.1(b). Each
active layer measures 72 ↓ 72 cm2 in area, 3 mm in thickness and is composed of four
HCAL Base Units (HBUs), each measuring 36↓36 cm2. One HBU contains 12↓12 = 144
scintillator tiles, with each tile having a dimension of 3 ↓ 3 cm2. Consequently, an entire
active layer is divided into 24 ↓ 24 = 576 tiles, resulting in a total of 24 ↓ 24 ↓ 38 = 21888
readout channels for the entire calorimeter. These tiles are individually read out via
silicon photomultipliers (SiPMs, see Chapter 5.3.1). The SiPM Hamamatsu MPPC of
type S13360-1325PE was chosen for the detector and is shown in Figure 5.1(c). Reflective
foil on top of all scintillator tiles is used to reduce cross-talk between the tiles, namely
the migration of photons from one SiPM cell to another during the amplification process
[12, 63, 64].

For the passive medium, non-magnetic stainless steel is used. One passive layer has a

31



5. CALICE Collaboration/DRD6 and the AHCAL Prototype

thickness of 17 mm, which corresponds to one radiation length and 0.1 nuclear absorption
lengths, resulting in a total length of 4.4ϱa ↔ 75 cm. A passive layer is positioned between
two active layers, thereby ensuring the shower development [12, 63, 64].

(a) The Ahcal prototype [63]. (b) One active layer of the Ahcal prototype

[64].

(c) SiPMs (bottom) and wrapped with scin-

tillator tiles (top left) and a reflective foil

(top right) [12].

Figure 5.1.: (a) The Ahcal prototype, (b) one of the 38 active layers and (c) its SiPMs.

The energy resolution of the Ahcal prototype has been determined from showers ini-
tated by negatively charged pions during a test beam run in 2018 (see Chapter 5.3.2).
Table 5.1 summarises the energy resolution for the uncompensated calorimeter and com-
pensated calorimeter with a local software compensation approach and a machine learning
method based on a neural network [50]. The factor b in Equation (4.22) can be neglected.
After applying software compensation algorithms, the energy resolution of the Ahcal
improves. Local compensation weights the individual hit energies, while the machine
learning approach takes the hadron shower event and the cell energies as inputs. Both
methods yield comparable results, with the first term in Equation (4.22), representing
stochastic fluctuations, showing a significant improvement after their application, espe-
cially with the neural network approach. Moreover, the constant term also shows an
improvement after applying software compensation algorithms.
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Table 5.1.: The contributions to the energy resolution in Equation (4.22) based on pion
beam datasets from 2018 [50] for uncorrected and corrected energies for the
Ahcal. The factor b in Equation (4.22) is negligible.

a [%] c [%]
uncorrected 56.1 ± 0.7 6.1 ± 0.1
local compensation 51.5 ± 0.42 1.0 ± 0.3
neural network 41.9 ± 0.5 4.0 ± 0.1

5.3.1. Silicon-Photomultipliers (SiPMs)

SiPMs are based on the principle of single photon avalanche diodes (SPADs), which are
used for signal amplification in semiconductors. This is achieved by combining a highly
doped p- and n-layer, p+ and n+, where an extended electrical field reaches its maximum.
The design of such SiPMs is shown in Figure 5.2. A high electric field is established
across the p+-n+ junction. This high-field region enables charge multiplication. When
the silicon-based semiconductor in an SiPM is operated in reverse bias at a voltage slightly
above the breakdown voltage, the device enters Geiger mode, where the signal becomes
independent of the primary ionisation. When a photon, acting as the primary ionisation
source, enters the material, it generates an electron-hole pair. The primary electron is
accelerated by the high electric field, gaining kinetic energy and generating additional
charge carriers through ionisation. The secondary charge carriers lead to the creation
of additional electron-hole pairs, resulting in a multiplication process, where the number
of charge carriers rapidly increases in the high-field region. The avalanche produces a
current pulse that is detected as a signal, enabling the SiPM to register the presence
of a single photon with high sensitivity. SiPMs are capable of achieving amplification
factors/gain factors of approximately 106 [31]. However, signal generation can also be
initiated via noise. The main contribution towards noise comes from thermal excitation
of charge carriers at higher temperatures and crosstalk. Thus, to avoid noise, operating
the SiPMs at lower temperatures and the use of guard rings or reflective foils is beneficial
[31, 65, 66].

The SiPMs used in the Ahcal-prototype were operated at 5 V above breakdown voltage
and achieve a gain of approximately 7 · 105. The small crosstalk of about 1 % and very
low temperature sensitivity of 54 mV/K makes them suitable for high-energy-physics [12].

5.3.2. Test Beam Campaign

The data that was used for this investigation has been recorded in three di!erent pe-
riods during a test beam campaign in 2018 at the Super Proton Synchrotron (SPS)
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Figure 5.2.: The structure of an SiPM [31]. A photon generates an electron-hole pair,
who both move towards their respective electrodes. In the high-electric-
field region, the electron accelerates, creating secondary charge carriers
through ionisation, which results in the creation of additional electron-hole
pairs. This triggers an avalanche of charge carriers, resulting in an ampli-
fied signal. The purpose of guard rings is to mitigate crosstalk between
neighbouring SiPMs.

facility of Cern. The datasets used in this thesis are based on the 38-layer setup
of the Ahcal. The calorimeter was tested using muons with energies of 40 GeV and
120 GeV for calibration, as well as negative pion and electron beams with energies of
10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 160, 200 GeV and 10, 20, 30, 40, 50, 60, 80, 100 GeV, re-
spectively. For all three particle types, approximately O(107) events were recorded. The
first test was conducted in May 2018, where the Ahcal prototype was mounted on a
movable platform to allow the beam to hit the calorimeter at various positions in the
xy-plane. A signal was recorded only when two external scintillation triggers detected a
particle at the same time. The second test beam run was conducted a month later, with
an additional layer of scintillator tiles of size 6 ↓ 6 cm2 inserted between the 37th and 38th

active layer. Additionally, a pre-shower detector was positioned in front of the Ahcal to
determine the energy deposition before the beam enters the calorimeter, while a TCMT
was placed behind it to capture the remnants of the showers and to avoid leakage, as
seen in Figure 5.3. The pre-shower detector comprises a single HBU unit, whereas the
tail catcher consists of twelve layers, each containing one HBU unit placed between the
7.4 mm thick absorbers. In the third test beam run in October 2018, the Cms High-
Granularity Calorimeter (HGCAL) [67, 68] was placed in front of the Ahcal. Therefore,
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only the shower tails and muons reached the Ahcal and thus, only 2.5 million events
were recorded. In total, 93 million events were recorded in 2018 [12, 69, 70].

Figure 5.3.: The design of the Ahcal prototype and the TCMT for the test beam run
at Cern in 2018 [50].
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6. Fast Simulation for Hadronic
Showers

This chapter focuses on the aspect of a data-driven fast simulation for pion showers in the
Ahcal prototype. Due to the high computational power and time required for simulating
particle interactions with matter, a data-driven approach is considered for fast simulation.
This approach significantly reduces the need for computational resources compared to
Monte Carlo simulations, such as with Geant4 [71]. Also, fast simulations play a crucial
role in tackling the challenges introduced by higher luminosity and increased detector
granularity in collider experiments, which significantly extend the CPU time required for
(Monte Carlo) simulations. A significant fraction of this computational e!ort is dedicated
to calorimeter simulations. To optimally use computing resources, developing e#cient
methods for the simulation of particle showers is essential [72]. The dataset used in this
investigation comprises the pion beam energies of 20, 40, 60, 80, 120, and 200 GeV from
the 2018 test beam run.

This chapter provides an overview of the basis of the approach for the data-driven fast
simulation chosen for this investigation, Kernel Density Estimators (see Chapter 6.1).
Additionally, a brief summary of other data-driven fast simulation algorithms for pion
showers is provided in Chapter 6.2.

6.1. Kernel Density Estimators (KDEs)

In order to simulate showers, a data-driven approach is employed in this analysis. The
dataset obtained from the test beam runs serves as the basis for the fast simulation. To
predict the underlying probability density function (PDF) of the dataset in the absence
of an analytical function, estimators are used. This analysis uses Kernel Density Es-
timators (KDEs) to simulate a given dataset. This investigation uses KDEs for the
simulation of the deposited energy for each tile in the calorimeter. A kernel function is
assigned to each xi from the dataset {x1, x2, . . . , xN}, K(xi), that can be any non-negative
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density function. In this instance, a Gaussian distribution

K(xi) = 1
⇓

2⇁
exp

(
→

1
2x2

i

)
(6.1)

with a mean µi of zero and a standard deviation ςi of one has been selected as the kernel
function [73]. The sum of kernel functions of all data points in the dataset is used to
estimate the PDF (Ref. [13]):

f(x) = 1
nh

n

i=1
K

(
x → xi

h

)
. (6.2)

The estimated PDF is normalised with the total number of data points in the dataset n

and the bandwidth parameter h > 0, which exerts a significant influence on the shape
of the PDF. An example is shown in Figure 6.1, where the blue crosses represent the
data points. The black curve represents the true PDF underlying the blue data points.
The blue, red, and green curves are estimated PDFs obtained using KDEs with varying
bandwidth values specified. The blue curve uses a bandwidth of h = 0.05, the red
curve uses h = 0.5, and the green curve uses h = 2. As previously mentioned, the
bandwidth parameter controls the smoothness of the estimated PDF: smaller bandwidths
(e.g. the blue curve) result in less smoothness, causing the PDF to peak at individual
data points, while larger bandwidths (e.g. the green curve) flatten the distribution too
much, potentially obscuring finer details of its true structure. The red curve provides a
good approximation of the true PDF.

A grouping of calorimeter cells, henceforth referred to as "buckets", were introduced to
reduce the total number of readout channels of the Ahcal. The geometrical categorisation
of the calorimeter cells into buckets is based on radial, angular and longitudinal segmenta-
tions of the calorimeter cells. At first, the 38 active layers of the Ahcal are grouped into
eight layer groups: {1-2, 3-4, 5-6, 7-8, 9-12, 13-16, 17-24, 25-38}. Eight circles with radii
{25, 50, 75, 100, 150, 200, 300, 400} mm and eight angular segments {

ε

4 , ε

2 , 3ε

4 , ⇁, 5ε

4 , 3ε

2 , 7ε

4 ,
2⇁} are then the structure for the 64 buckets per layer group, which can be seen in Figure
6.2. Thus, the 21888 cells of the Ahcal are grouped into 512 buckets.

For the fast simulation, di!erent bandwidth parameters were investigated to determine
the best value for the PDF of energy di!erences in each bucket,

”E = ES → EA, (6.3)

where ES describes a single energy in a bucket of the calorimeter and EA the average
energy of the said bucket. Figure 6.3 shows the energy distributions. For the simulation
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6.1. Kernel Density Estimators (KDEs)

Figure 6.1.: The e!ect of the bandwidth h on a KDE-estimated PDF: the black curve
represents the true distribution, while the blue, red, and green curves show
estimates with hblue = 0.05, hred = 0.5, and hgreen = 2.

Figure 6.2.: The 64 buckets for each of the eight layer groups based on a radial and
angular classification.

39



6. Fast Simulation for Hadronic Showers

of these energy di!erences with KDEs, 28 values for the bandwidth were used: h ↘

{0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 0.09, 1}. Here, the distributions
for bucket number 261, which corresponds to the fifth bucket in the third layer group, are
shown for h = 0.001, 0.01, 0.1 and 1. The fifth bucket in the third layer group corresponds
to an angular bin of ⇁ and a radial bin of 25 mm, as seen in Figure 6.2, and layer five and
six which are added to form the third layer group. The larger the bandwidth becomes,
the worse the agreement between data and simulation will be.
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Figure 6.3.: The distributions of the energy di!erences ”E in units of MIP for h =
0.001, 0.01, 0.1 and 1 for the fixed bucket number 261(= fifth bucket in the
third layer group). The red histograms show the energy distributions ob-
tained from data and the histograms in green correspond to the simulated
energy di!erences. Additionally, the KS probability and ▷2/NDF values
are displayed.

To determine the degree of agreement between data and simulation, two statistical
tests were taken into consideration: the Kolmogorov-Smirnov (KS) test [74, 75] and the
▷2/NDF [76] test. The KS test assesses the shape compatibility between two histograms
(data and simulation) in each bucket by calculating the supremum (= maximum absolute

40



6.1. Kernel Density Estimators (KDEs)

di!erence [73]) between them,

Dn = sup
X

|FX → Femp|, (6.4)

where FX is the distribution obtained from simulation, representing the KDE from Equa-
tion (6.2), while Femp is obtained from data [77]. The supremum of the di!erences between
two histograms is computed across all bins. The maximum of these values is used as the
KS test statistic, which is then converted into a probability,

P (z) = 2
↑

j=1
(→1)j→1e→2j

2
z

2 with z = Dn

⇓
n, (6.5)

where n describes the sample size [78, 79]. A KS probability of zero indicates no agreement
between the data and simulation, while a probability of one means perfect agreement.

The ▷2/NDF test between two histograms is determined as follows (Ref. [76, 80])

▷2/NDF = 1
NDF

number of bins
per bucket

i=1

(
xsim

i
→ xdata

i

ςsim
i

)2

. (6.6)

It computes the sum of the squared di!erences between data and simulation, normalised to
the squared standard deviation of the simulation, for each bin in an energy distribution of
a bucket. The index i runs over the number of bins in an energy distribution of a bucket
and the sum is then normalised by the number of degrees of freedom (NDF), i.e. the
number of bins in the respective bucket. ▷2/NDF is always non-negative. A value of zero
indicates perfect agreement between two histograms; the higher the value, the greater the
disagreement.

Both tests were calculated for each of the 512 buckets for each bandwidth. The mean
KS test value and mean ▷2/NDF value for each bandwidth were then determined, and
the results in Figure 6.4 and 6.5 demonstrate that a value of h = 0.01 exhibits a good
balance between over-fitting and under-fitting the data.

41



6. Fast Simulation for Hadronic Showers

Figure 6.4.: The KS probability for 28 di!erent bandwidth parameters for di!erent pion
energies. Both axes are presented on a logarithmic scale.

Figure 6.5.: The ▷2/NDF test for 28 di!erent bandwidth parameters for di!erent pion
energies. Both axes are presented on a logarithmic scale.

6.2. Alternative Fast Simulation Algorithms for
Particle Showers

Di!erent algorithms have already been investigated for a fast simulation of particle show-
ers. As previously mentioned, the goal is to reduce computational requirements for the
simulation of particle showers. The binning based on the geometrical categorisa-
tion of the calorimeter tiles into buckets has already been described above. In this
approach, the original 24 ↓ 24 ↓ 38 = 21888 tiles of the Ahcal prototype are reduced to
512 readout channels for the fast simulation. The energy depositions in these buckets form
the input for the KDEs. The main di#culty of this approach is the geometrical transfor-
mation of the hit energies per tile to the buckets. Its performance and more details on
the algorithm can be found in the PhD thesis of Julian Utehs (to be published).
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A di!erent method is based on a Principle Component Analysis (PCA) [81], which
was investigated by André Wilhahn in his Master’s thesis [82]. A PCA converts a set of
correlated data points into an uncorrelated one. In this approach, the distributions of
the computed energy di!erences from data (see Equation (6.3)) are centred around zero
and normalised to their standard deviations. Next, the PCA is applied by transforming
the energy di!erences into uncorrelated principal components and obtaining their PDFs.
The inverse transformation is then performed, converting the principal components back
into simulated energies, which remain normalised and centred around zero. Finally, the
simulated energy di!erences are obtained by scaling the normalised energy di!erences
with their respective standard deviation and adding the respective mean value. For this
algorithm, the energy depositions in the last seven layers of the Ahcal were summed, as
less energy is deposited in the rear region of the calorimeter. On the contrary, the PCA
was applied layer-by-layer to the first 32 layers. As a result, a total of 33 layers were
used as input for the PCA. The simulated energy di!erences obtained through the PCA
showed significant deviations from the distribution of energy di!erences in data, which is
why this approach is no longer being pursued.

A third approach, that exploits the Discrete Cosine Transformation (DCT) [83],
is currently under investigation. A dataset {x0, x1, . . . , xN→1} is transformed into another
of same size {X0, X1, . . . , XN→1} via (Ref. [83])

Xk =
N→1

n=0
xn cos


⇁

N

(
n + 1

2

)
k


. (6.7)

Since three numbers are required to determine the position of a hit energy in the calorime-
ter, this approach utilises a three-dimensional DCT. However, the computation of a three-
dimensional DCT has a runtime of the order O(n6), where n represents the number of
outputs. Thus, a Fast Cosine Transformation (FCT) [84] is required and is based on a
Fast Fourier Transformation (FFT) [85, 86]. Since the formulas behind the FFT are more
straightforward, it is presented here. The key idea is that the FCT/FFT separates the
sum over hit energies into even and odd indices (Ref. [86]):

Xk =
N→1

n=0
xne→ 2ωi

N nk with k = 0, 1, 2, . . . , N → 1

=
N
2 →1

m=0
x2me→ 2ωi

N/2 mk

  
even indices Ek

+ e→ 2ωi
N k

N
2 →1

m=0
x2m+1e

→ 2ωi
N/2 mk

  
odd indices Ok

= Ek + e→ 2ωi
N kOk

(6.8)
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With the FCT/FFT, the runtime reduces to O(n log (n)) (or less, depending on the im-
plementation details). Results show that only the even-even nodes (= even x- and y-
components) have large coe#cients and thus, even-even nodes dominate in the FCT.
These nodes are then used in the simulation process with KDEs. The results will be
shown in the PhD thesis of André Wilhahn (to be published).
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7. Cell-Ordering Algorithm

A new fast simulation algorithm based on ordering calorimeter cells is proposed in this
chapter. This approach is to replace the current binning method based on a geometrical
classification of the calorimeter cells, as described in Chapter 6. This chapter starts with
the event selection procedure for all datasets, followed by an explanation of the algorithm
and the results obtained for 40 GeV pion showers are shown afterwards.

The general approach and its individual steps are illustrated in Figure 7.1. Blue boxes
represent data-related steps, red boxes correspond to simulation steps, and purple boxes
indicate the results. Initially, the hit energies and their corresponding positions are ex-
tracted from the dataset, and the centre of gravity (CoG) in the xy-plane is computed
for each event. Next, the distance of each tile to the CoG is determined, and the tiles are
arranged in ascending order based on this distance. These steps are described in more
detail in Chapter 7.2.

For the KDE-based simulation, CoGs are simulated for each event, followed by the
ordering of tiles based on their distances from the simulated CoGs, as discussed in Chapter
7.3. In the final step, the ordered energy values from data serve as input for the KDEs,
which then produce simulated hit energies, sorted by distance. This process is elaborated
upon in Chapter 7.4. Lastly, the simulated hit energies are assigned to the ordered tiles
according to their distance from the simulated CoGs.

7.1. Event Selection

Di!erent criteria were defined for the events to pass in order to be considered in the
investigation:

• Energy deposition in the first physical layer is not considered in order to minimise
uncertainties in the shower start finding algorithm [69]. Therefore, in the following,
the layers are indexed from zero to 37.

• A particle identification algorithm based on a boosted decision tree was applied for
the removal of beam contamination [69].
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Figure 7.1.: Strategy for the cell-ordering algorithm for a fast pion shower simulation.

• A low-energy cut has been applied in order to remove muon events, which the
particle identification algorithm could not filter out itself. For a given pion energy,
ten percent of the most probable value of the corresponding total energy PDF were
used as threshold.

7.2. Cell-Ordering based on Centres of Gravity

The approach for the fast simulation is based on the distance of the tiles to the event’s
centre of gravity, CoG, in the x- and y-direction (CoGX and CoGY). The CoG in a specific
direction is defined as the sum over all hits of the hit energy Ehit times the hit position
in the respective direction, normalised to the total energy Etotal of the event:

CoGi = 1
Etotal



hits
Ehit · ihit with ihit ↘ [x, y, z]. (7.1)

The function scipy . stats .gaussian_kde() provided by the Python package SciPy [87] is
unable to simulate all 24 ↓ 24 ↓ 38 hit energies of the 100000 events simultaneously since
many hits in an event, on average, have zero energy. Since the KDEs read the given
energies as a matrix and invert it, the presence of a considerable number of zeros results
in the matrix becoming singular, thereby preventing the KDE from inverting the matrix.
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Consequently, only the first 20 layers of the detector were considered for now. Given that
the global CoGX/CoGY per event was determined, the distance calculation and ordering
of the calorimeter cells were only required for a single layer per event. The distance was
calculated using the Euclidean distance formula

d =


(I → CoGX)2 + (J → CoGY)2, (7.2)

where I and J represent the tile centre position in millimetres in the x- and y-direction,
respectively, with the coordinate system’s origin situated at the bottom left corner of the
layers [73]. A schematic view of the distance calculation algorithm is shown for a 5 ↓ 5
grid in Figure 7.2. The distance from the centre of each tile to the exact position of the
event’s CoG, here indicated as a star, is calculated. Subsequently, the tiles are arranged
in ascending order based on their distance to the event’s CoG in the xy-plane. As a result,
the tile corresponding to the event’s CoG tile is always the first tile/bin and is labelled
with the tile number zero.

Figure 7.2.: A schematic view of the distance calculation from the centre of the tiles to
the event’s centre of gravity tile.

Figure 7.3 shows the distances in millimetres for the first two events. The white star
indicates the CoG in the xy-plane.

Subsequently, the hit energies per tile and their tile positions were extracted from data
for 100000 events.
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Figure 7.3.: The distance of the tiles to the event’s global CoG for the first two events.
The axes show the tiles in mm and tile numbers. The white star indicates
the CoG in the xy-plane

7.3. Simulation of the Centres of Gravity with KDEs

Since a tile number relative to the shower CoG in all three directions must be assigned to
the simulated hit energies (see Chapter 7.4), simulating the CoGs is essential. The 24↓24
tiles need to be sorted in ascending order of distance to the simulated CoG in the xy-plane.
This is achieved via KDEs with the bandwidth parameter set to h = 0.01, in which the
CoGs in all three dimensions are simulated simultaneously. For 100000 extracted events
in the data, the CoG in all three dimensions were computed for each event, resulting in a
total of 300000 values, which serve as the input for the CoG simulation with KDEs. From
the estimated PDF, 10000 CoGs were sampled, which include three values per event
(x-, y-, and z-direction). Figure 7.4 shows the CoGs in all three dimensions for data
and simulation for 40 GeV pions. The distributions for the other datasets are shown in
Appendix A.1. The axes show the tiles in mm and layer number. The taller a peak in the
distribution, the deeper the CoG is located inside the detector. Additionally, the colour
indicates the layer number. A significant fraction of the CoGs in the xy-plane is centred
in the detector and only a few events have CoGs further to the edges of the calorimeter
layers. Table 7.1 summarises the mean values and standard deviations of the CoGs, and
it is clearly visible that the mean values and standard deviations of the simulated CoGs
align well with the ones obtained from data.

The distributions of the CoGs as functions of tile number or layer number are shown
in Figure 7.5, demonstrating strong agreement between data and simulation. In the x-
and y-directions, the distributions exhibit the expected Gaussian behavior, whereas the
CoGZ distribution follows a Landau distribution, peaking around layer nine or ten. For
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Figure 7.4.: The distributions of the CoGs in all three directions for (a) data and (b)
simulation with KDEs for 40 GeV pions. The axes show the tiles in mm
and layer number, which is also shown in colour. A small fraction of the
CoGs are on the edges of the layers, and the higher the peak, the larger
the value of the CoG in z-direction.

the five other datasets, the corresponding tables and histograms are shown in Appendix
A.2. Subsequently, the distances of the 24 ↓ 24 tiles to the simulated CoGs in x- and
y-direction are then calculated via Equation (7.2).

Table 7.1.: The mean values and standard deviations of the CoGs in each direction for
data and the respective simulation for 40 GeV pions.

40 GeV CoGX [mm] CoGY [mm] CoGZ [layer]
Data 383.77 ± 37 382.82 ± 31 9 ± 3
Simulation 383.83 ± 37 382.44 ± 29 9 ± 3

CoGX [tile] CoGY [tile] CoGZ [layer]
Data 13 ± 2 13 ± 2 9 ± 3
Simulation 13 ± 2 13 ± 1 9 ± 3

7.4. Simulation of Energies with KDEs

In order to simulate hit energies, the sorted hit energies by distance to CoG from data
were passed to the KDEs with a value of h = 0.01 as bandwidth. In a similar manner
to the simulation of the CoGs (see Chapter 7.3), a single multidimensional PDF was
generated based on the ((24 ↓ 24)tiles ↓ 20layers) hit energies per event for the estimation
of the true PDF of these hit energies. From the estimated PDF, 10000 events were
extracted, each comprising (24 ↓ 24)tiles ↓ 20layers hit energies. As the hits from data
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Figure 7.5.: The normalised distributions for the simultaneously simulated CoGs with
KDEs.

were ordered according to their distance to the CoGX/CoGY, the energies in the 10000
simulated events are automatically sorted. Therefore, the simulated energies are assigned
to the sorted tiles based. In the following, all energies are expressed in units of minimum
ionising particles (MIPs). The conversion factor from GeV to MIPs for this thesis was
determined to be 37.3 MIP/GeV [88]. Moreover, due to the KDE simulating hit energies
smaller than zero, which originate from the extraction of the hit energies per event from
the estimated PDF, a threshold was established: all tile-energies less than 0.05 MIP are
set to zero.

7.4.1. Energy Distribution per Tile

Figure 7.6 shows the energy deposition per tile, ordered by distance, for data and simu-
lation for layers zero, five and 12. This provides a more e!ective approach of comparison
between the two, as the tiles are categorised by distance and the hit energies are simu-
lated for each tile category. The first tile, denoted as tile zero, corresponds to the CoG
tile itself, which varies between events. The second tile is thus the next closest tile to the
event’s CoG in the xy-plane, and so forth. The distributions exhibit strong agreement be-
tween the data and the simulation. At higher hit energies, statistical fluctuations become
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7.4. Simulation of Energies with KDEs

more pronounced in the simulation histograms due to the limited sample size of 10000
events. Nevertheless, the data and simulation remain in good agreement over the entire
energy range. Moreover, energy deposition generally decreases as the distance from the
CoG-tile increases. However, as the shower develops, energy is deposited further away
from the centre of the detector, a!ecting more tiles and leading to an increased number of
registered hits in the layers deeper within the detector. Around layer number 4 or 5, tiles
farther from the CoGs generally record more hits, as the maximum in energy deposition
in the longitudinal direction is reached, as shown in Figure 7.7. As the shower continues
to develop, the overall energy deposition decreases and even more tiles in the outer region
of the layers register hits.
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(c) Layer 0; Tenth Tile

0 20 40 60 80 100 120 140
Energy [MIP]

4−10

3−10

2−10

1−10

Ar
bi

tra
y 

U
ni

ts
 (n

or
m

al
is

ed
)

Layer 5; Tile No. 0

Data

Simulation

=40 GeVπE

(d) Layer 5; First Tile

0 20 40 60 80 100 120 140
Energy [MIP]

5−10

4−10

3−10

2−10

1−10

1

Ar
bi

tra
y 

U
ni

ts
 (n

or
m

al
is

ed
)

Layer 5; Tile No. 4

Data

Simulation

=40 GeVπE

(e) Layer 5; Fifth Tile
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(f) Layer 5; Tenth Tile
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(g) Layer 12; First Tile
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(h) Layer 12; Fifth Tile
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(i) Layer 12; Tenth Tile

Figure 7.6.: The normalised deposited energy for the first, fifth and tenth closest tiles
to the event’s CoGX/CoGY in the first, sixth and 12th layer (layer number
zero, five and 12, respectively). Simulated hit energies with a value of less
than 0.05 MIP are set to zero. Additionally, the y-axis is plotted on a
logarithmic scale.
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Figure 7.7.: The longitudinal energy distribution for the full dataset ((24 ↓ 24)tiles ↓

38layers) and the reduced dataset ((24↓24)tiles ↓20layers) and its simulation.
The distribution of the reduced dataset (light-blue) is covered by the dis-
tribution of the simulation (red).

7.4.2. Longitudinal Energy Deposition

The deposited energy per tile has been plotted for data and simulation and is shown for
the first, tenth and 20th layer for an example event in Figure 7.8.
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Figure 7.8.: The deposited energy of the second event for the first, tenth and 20th layer
for data and simulation.
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7.4. Simulation of Energies with KDEs

The deposited energy from data, especially in the first layers, show that the hits do not
all lie in the centre of the layers, but that they are slightly shifted. This is due to a slight
tilt of the Ahcal prototype during the test beam runs.

As anticipated, the simulation exhibits the expected behaviour. In the initial layers,
the deposited energy is closer to the centre to the layers. There is a greater deposition of
energy in the central region of the detector. Additionally, a higher number of tiles register
some energy. As the pion shower progresses, the shower radius increases. This can be seen,
as tiles further away from the centre of the layer also register hits, and the overall energy
deposition in the layers further back decreases, indicating that the simulated shower has
reached its maximum longitudinal extent.
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8. Shower Shape Variables

To examine whether the simulation based on the distance-sorting algorithm also simulates
a shower’s kinematic behaviour correctly and not only its hit distributions, shower shape
variables have been investigated. This investigation ensures that the algorithm properly
captures the physical characteristics and evolution of particle showers within the calorime-
ter. Chapter 8.1 defines the variables. As the simulation has to neglect tiles or layers due
to the limitation by KDEs, Chapter 8.2 introduces an approach based on Gaussian noise
to account for the energy loss. Lastly, Chapter 8.3 shows the distributions of the shower
shape variables.

8.1. Definition of Shower Shape Variables
The following variables are investigated:

• Total Energy: Etotal = 

hits
Ehit,

• Centre of Gravity: CoGi = 1
Etotal



hits
Ehit · ihit with i ↘ [x, y, z],

• Central Fraction: Fcentral = 1
Etotal



hits
Ehit if rhit < 30 mm or rhit < 60 mm,

• Shower Radius: R = 1
Etotal



hits
Ehit·rhit with rhit =


(xhit → CoGX)2 + (yhit → CoGY)2,

• Shower Variance: Var(i) = 1
Etotal



hits
Ehit · (ihit → CoGi)2 with i ↘ [x, y, z],

• Shower Skew: Skew(i) = 1
Etotal



hits
Ehit ·

(
ihit→CoGi

ςi

)3
with ςi =


Var(i) and i ↘

[x, y, z],

• Shower Kurtosis: Kurt(i) = 1
Etotal



hits
Ehit ·

(
ihit→CoGi

ςi

)4
with ςi =


Var(i) and i ↘

[x, y, z],

• Number of hits per event: Nhits with Ehit > 0 MIP and

• Hit energies: Ehit with Ehit > 0 MIP.
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8. Shower Shape Variables

Since KDEs cannot simulate the whole dataset, i.e. (24↓24)tiles↓38layers, constraints on
the number of tiles and layers had to be introduced. So far, the choice was made to exclude
the 18 layers of the detector, while all tiles in the first 20 layers were included. In addition
to that, for the analysis of shower shape variables, three alternative configurations were
explored too. All configurations investigated are:

1. (24 ↓ 24)tiles ↓ 20layers (composition used until now)

2. (16 ↓ 16)tiles ↓ 38layers,

3. (20 ↓ 20)tiles ↓ 25layers and

4. (20 ↓ 20)tiles ↓ 30layers.

It is important to note that, for configurations such as (20 ↓ 20)tiles ↓ 30layers, the first
20 ↓ 20 tiles, after the distance-ordering algorithm was applied, for each of the first 30
layers were selected. As a result, the chosen tiles in these layers do not necessarily form
a rectangle on average.

In this chapter, the results for the composition (20 ↓ 20)tiles ↓ 30layers are shown. For
the other compositions of tiles and layers, the distributions of the shower shape variables
for 40 GeV pion dataset are shown in Appendix B.1.

8.2. Gaussian Noise for Neglected Calorimeter
Regions

For every shower shape variable, the simulated distributions of the reduced datasets are
expected to deviate from the distributions of the full dataset. An example is shown in
Figure 8.1 for the total energy. The simulation of the reduced dataset is shown in red,
whereas the distributions for the full and reduced dataset are shown in dark blue and light
blue, respectively. Less tiles per layer and exclusion of the outer tiles per layer reduces
the total energy per event, which is visible as a shift of the simulated distribution towards
smaller total energies. The ▷2/NDF = 11.50 supports the expected disagreement.

In order to achieve the desired agreement between the full dataset and simulation, an
approach based on the simulation of Gaussian noise is investigated. In this approach, the
energy distribution of the excluded tiles in data, as shown in Figure 7.6, are examined
first on a linear scale, as shown in Figure 8.2. It is apparent from the excess of events
around zero, that a significant fraction of hits is simulated with E ↑ 0 MIP. In order to
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Figure 8.1.: The distribution of the total energy for the (20 ↓ 20)tiles ↓ 30layers configu-
ration.
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(a) Layer 0; First Tile
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(b) Layer 0; Fifth Tile
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(c) Layer 0; Tenth Tile

0 20 40 60 80 100 120 140
Energy [MIP]

0

0.05

0.1

0.15

0.2

0.25

Ar
bi

tra
y 

U
ni

ts
 (n

or
m

al
is

ed
)

Layer 5; Tile No. 0

Data

Simulation

=40 GeVπE

(d) Layer 5; First Tile

0 20 40 60 80 100 120 140
Energy [MIP]

0

0.1

0.2

0.3

0.4

0.5

Ar
bi

tra
y 

U
ni

ts
 (n

or
m

al
is

ed
)

Layer 5; Tile No. 4

Data

Simulation

=40 GeVπE

(e) Layer 5; Fifth Tile
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(f) Layer 5; Tenth Tile
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(g) Layer 12; First Tile
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(i) Layer 12; Tenth Tile

Figure 8.2.: The normalised deposited energy for the first, fifth and tenth closest tile to
the event’s CoGX/CoGY in the first, sixth and 13th layer (layer number
zero, five, and 12, respectively). All simulated energies with a value of less
than 0.05 MIP are set to zero.
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8. Shower Shape Variables

find the fraction of non-zero hits, the following integral is defined:

f>0 = 1 →


bin at zero = x



bins
yi → y0. (8.1)

Here, yi is the height of bin i and y0 is the bin located at zero and x the bin width, which
is the same for each bin. The integral f>0 serves for the amount of energy deposited in
this tile.

The integral is performed on all energy distributions of all tiles that have been neglected
so far, for all four configurations. E.g. for the (20 ↓ 20)tiles ↓ 30layers configuration, the
distributions of the last 24 ↓ 24 → 20 ↓ 20 = 144 in the first 30 layers are investigated, in
data. Additionally, the integral is similarly calculated for the energy distribution for all
tiles of the entire previously unconsidered last eight layers.

Next, a respective mean, µ, and standard deviation, ς, are calculated for all the dis-
tributions excluding the zero bin, and Gaussian distributions are created from these pa-
rameters. Since the chosen histogram binning for the distributions not only a!ects the
integrals f>0 but also the means and standard deviations, the following binning for the
energy distributions was selected for the (20 ↓ 20)tiles ↓ 30layers configuration:

• Layer 0-29: for the unconsidered tiles, i.e. the remaining 24 ↓ 24 → 20 ↓ 20 = 144
tiles: 35 bins, ranging from 0 to 50 MIPs.

• Layer 30-37:

– For the first 20 → 20 tiles: 75 bins, ranging from 0 to 150 MIPs, as more
energy will be deposited in this region, on average.

– For the remaining 24 → 24 ↑ 20 → 20 = 144 tiles: 35 bins, ranging from
0 to 50 MIPs.

An analogous binning approach was applied to the three other tile-layer compositions.
To assign simulated energy to the previously neglected tiles, 10000 random numbers

(one per event) have been generated for each unconsidered tile, each number lying between
zero and one. The computed integrals per tile now serve as a threshold: if a randomly
generated number is less than or equal to its respective integral f>0, another random
number greater than zero is drawn from the corresponding Gaussian distribution. This is
then the hit energy in the tile for that specific event. Conversely, if the random number is
larger than the integral f>0, the energy deposition in the tile remains zero for that specific
event.
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8.3. Distributions of Shower Shape Variables

8.3. Distributions of Shower Shape Variables
The objective is to ensure a good agreement between the distribution of the full dataset
and the distribution of the simulation for each shower shape variable, as the simulation
should accurately approximate the hit energies across the entire calorimeter. However,
as mentioned earlier, an exact agreement between the distributions of the full dataset
and the simulation for the shower shape variables is not expected. This discrepancy
arises because neglecting tiles in the simulation process excludes hit energies, which in
turn a!ects the calculation of these variables. Therefore, hit energies based on Gaussian
distributions were included into the simulation, to account for the missing energy. The
expectation is that the agreement between the resulting distribution and the distribution
of the full dataset for each shower shape variable will further improve. In the following
plots, the full dataset is always drawn in dark blue, the reduced dataset in light blue, the
simulation without Gaussian noise in dark red, and the simulation with Gaussian noise
in dark green.

Total Energy

Figure 8.1 shows the total energy distribution per event. As expected, there is a discrep-
ancy between the simulation and the full dataset. However, incorporating Gaussian noise
into the missing tiles in the simulation significantly improves the agreement with the full
dataset. The simulation with Gaussian noise shifts slightly to higher total energies, with
its peak almost aligning with the full dataset. The most noticeable di!erence between
these two histograms occurs in the energy range [800, 1000] GeV, where the inclusion of
Gaussian noise did not have a significant impact.
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Figure 8.3.: The distribution of the total energy for the (20 ↓ 20)tiles ↓ 30layers config-
uration for the full and reduced dataset and simulation with and without
Gaussian noise.

Centres of Gravity

The distributions for the CoGs in the x-, y, and z-directions are shown in Figure 8.4.
Here, the CoGs are calculated directly from the hit energies and their position in the
calorimeter, whereas the CoGs presented in Chapter 7.3 were simulated via KDEs. The
simulation with KDEs had to be done beforehand, to order the tiles according to their
distance to the CoG, as a tile number needed to be assigned to the simulated hit energies.

The means for the distribution and the mode for the z-direction, respectively, of the
simulated CoGs agree well with data in all three directions and the values listed in Table
7.1. The addition of Gaussian noise slightly improves the agreement between the simu-
lation and the full dataset, which is also reflected by the slight decrease of the ▷2/NDF
values. Furthermore, in the z-direction, the simulated CoG distributions show very good
agreement with data after including Gaussian noise.
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(c) CoGZ

Figure 8.4.: The distribution of CoGs for the (20↓20)tiles ↓30layers configuration for the
full and reduced dataset and simulation with and without Gaussian noise.

Central Fraction

This variable represents the energy in a cylinder with radius of either 30 or 60 mm around
the shower axis, as shown in Figure 8.5. On average, 30 % of the total energy per event is
contained within a 30 mm radius cylinder, while approximately 60 % of the total energy is
included in cylinder with a 60 mm radius. The central fraction is well modelled for both
thresholds. Even without the addition of Gaussian noise, the distributions for the full
dataset and simulation align closely, as reflected in the ▷2/NDF test value.

Shower Radius

Excluding outer tiles in the first 30 layers has minimal impact on the distribution of the
shower radius from simulation without Gaussian noise, as it remains similar to that of
the full dataset, as shown in Figure 8.6. However, there are more simulated events with
a smaller radius and fewer events with a larger radius than in the distribution for the
full dataset. Taking into account Gaussian noise, the simulated distribution of the shower
radius closely matches that of the full dataset in the aspects of the shape and width of the
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(a) 30 mm
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(b) 60 mm

Figure 8.5.: The distribution of the central fraction for (a) rhit < 30 mm and (b) rhit <
60 mm for the (20 ↓ 20)tiles ↓ 30layers configuration for the full and reduced
dataset and simulation with and without Gaussian noise.

distribution and location of the mean. The entire distribution shifts toward the peak of
the full dataset, which is located at approximately 75 mm. Additionally, the height of the
distribution for simulation with Gaussian noise improves significantly in almost each bin,
leading to much better agreement with the full dataset. This improvement also results
in a substantial reduction of the ▷2/NDF value, decreasing from nearly 27 to slightly
above six, highlighting a more accurate modelling of the shower radius. Nevertheless,
the simulation with Gaussian noise still yields fewer events than expected with a radius
greater than 85 mm.

Shower Variance

The shower variance describes how widely the energy is distributed around the shower
axis along a specific direction. Figure 8.7 indicates that, in the xy-plane, the mean shower
variance is approximately five, suggesting that on average, energy deposition occurs within
a range slightly less than three tiles from the CoG in this plane. In the z-direction, a
significant portion of the energy deposition is concentrated around nine layers from the
event’s CoGZ. In all three directions, the simulation without Gaussian noise is shifted
towards lower variances. Adding Gaussian noise helps aligning the peak of the simulation’s
distribution with the full dataset. The shower variance in the x- and y-directions matches
well, but in the z-direction, there are noticeable di!erences, especially in the tails of the
distribution, as the distribution is narrower than that of the full dataset.
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Figure 8.6.: The distribution of the shower radius for the (20 ↓ 20)tiles ↓ 30layers config-
uration for the full and reduced dataset and simulation with and without
Gaussian noise.
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(b) y-direction
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(c) z-direction

Figure 8.7.: The distribution of the shower variance in all three directions for the
(20 ↓ 20)tiles ↓ 30layers configuration for the full and reduced dataset and
simulation with and without Gaussian noise.
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8. Shower Shape Variables

Shower Skewness

This variable describes the degree of asymmetry of the shower inside the detector. The
shower skewness in the x- and y-directions is expected to be zero on average. However, the
skewness exhibits predominantly negative values, with an average of approximately →1,
as shown in Figure 8.8. Therefore, the showers are mostly left-skewed. This asymmetry
originates from a small beam tilt in the test beam run, where the beam was not perfectly
centred on the Ahcal prototype. Conversely, the z-direction exhibits positive skewness,
indicating a right-skewed shower in this direction. The distributions in all three figures
show good, but not ideal agreement.

In the radial plane, incorporating Gaussian noise improves the distribution, particularly
for smaller values of the shower skewness. However, the simulation exhibits a smaller frac-
tion of events with negative skewness compared to data, while a larger fraction of events
has a skewness of approximately →1. For positive skewnesses, the simulation with Gaus-
sian noise shows good agreement with the full dataset. In the z-direction, incorporating
Gaussian noise worsens the skewness, particularly for larger values. Furthermore, the dis-
tribution of the simulation with Gaussian noise is significantly wider than that of the full
dataset. In this case, the simulation without Gaussian noise exhibits better agreement
with the distribution of the full dataset than the one with Gaussian noise due to noise
being symmetric instead of antisymmetric.

Shower Kurtosis

The kurtosis characterises the steepness and shape of the shower in the calorimeter. As
shown in Figure 8.9, it takes on only positive values across all spatial directions, indi-
cating that the showers remain peaked rather than flat. In the x- and y-directions, the
distributions peak around a value of six, while in the z-direction, the maximum occurs at
approximately three. With the inclusion of Gaussian noise in the previously unconsidered
tiles, the distribution aligns almost perfectly with the one from the full dataset, also sup-
ported by the ▷2/NDF value: ▷2/NDF

x
= 36.14 ↖ 3.02 and ▷2/NDF

y
= 24.65 ↖ 3.86.

However, in the z-direction, the agreement between the full dataset and the simulation
with Gaussian noise deteriorates. The distribution is too broad compared to that of the
full dataset, particularly for values starting at approximately 5.5. The distribution with-
out Gaussian noise shows better agreement with the full dataset, although the simulation
underestimates the dataset for values greater than or equal to 4.5.
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(c) z-direction

Figure 8.8.: The distribution of the shower skewness in all three directions for the
(20 ↓ 20)tiles ↓ 30layers configuration for the full and reduced dataset and
simulation with and without Gaussian noise.
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(c) z-direction

Figure 8.9.: The distribution of the shower kurtosis in all three directions for the
(20 ↓ 20)tiles ↓ 30layers configuration for the full and reduced dataset and
simulation with and without Gaussian noise.

Number of Hits

Figure 8.10 presents the distributions of the number of hits per event. Both the simulation
with and without Gaussian noise overestimate the number of hits in the shower. This
suggests that the simulation using KDEs, generates too many hits above zero, even though
a threshold of 0.05 MIP was applied to filter out low-energy depositions. The distribution
with additional Gaussian noise hence exceeds the one without even more.
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Figure 8.10.: The distribution of the number of hits for the (20 ↓ 20)tiles ↓ 30layers
configuration for the full and reduced dataset and simulation with and
without Gaussian noise.
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Hit Energies

For the distribution of the hit energies per event, the hit energies larger than zero were
considered, as shown in Figure 8.11. This indicates that for data and simulation, most
of the energies have values in the lower energetic region, such as the interval [0, 5] MIPs.
Including non-zero hit energies randomly generated from a Gaussian distributions does
not change the agreement between the full data and simulation significantly. Furthermore,
the fraction of low energetic hits in the first bin is larger for simulation than for datasets.
This indicates that to many hits smaller than 0.1 MIP exist in the simulation. For larger
hit energies, data and simulation are in good agreement.
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Figure 8.11.: The distribution of hit energies for the (20↓20)tiles ↓30layers configuration
for the full and reduced dataset and simulation with and without Gaussian
noise.
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9. Results at Di!erent Energies

It is of considerable importance to investigate the modelling of the fast simulation al-
gorithm for other pion beam energies. Therefore, this chapter shows the results of the
shower shape variables for the pion energies of 20, 60, 80, 120 and 200 GeV for the tile-
layer composition (20 ↓ 20)tiles ↓ 30layers. Also, only the distributions for the total energy,
central fraction, shower radius, shower variance as well as shower skewness are shown. For
the three-dimensional variables, only the results in x- and z-direction are shown, as the
distributions in y-direction exhibit similar results to the ones in x-direction. These results
and the distributions for the other variables for the (20 ↓ 20)tiles ↓ 30layers configuration
can be found in Appendix B.2.

Total Energy

The distributions of the total energy per event are shown in Figure 9.1 for the other
datasets. With an increase in beam energy, the total energy also increases. Additionally,
the smaller the beam energy, the better the agreement is between the distribution of the
full dataset and the simulation without Gaussian noise. This indicates that for lower beam
energies, the cuto! at 20 ↓ 20 tiles for the first 30 layers already includes a significant
part of the total deposited energy. Including hit energies for neglected tiles provides a
better agreement between data and simulation, as the simulation distributions are shifted
towards larger energies.
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(c) 80 GeV
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(d) 120 GeV
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Figure 9.1.: The distribution for the total energy for the (20 ↓ 20)tiles ↓ 30layers config-
uration for the full and reduced dataset and simulation with and without
Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.

Central Fraction

Similar to the distributions for 40 GeV pions, the central fraction exhibits a very good
agreement between data and simulation (see Figure 9.2 and 9.3). There are now significant
deviations visible. Moreover, for larger pion beam energies, the distributions shift to larger
values of the central fraction due to higher beam energies.
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Figure 9.2.: The distribution for the central fraction with 30 mm for the (20 ↓ 20)tiles ↓

30layers configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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Figure 9.3.: The distribution for the central fraction with 60 mm for the (20 ↓ 20)tiles ↓

30layers configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.

Shower Radius

The shower radius becomes smaller as the beam energy increases, as shown in Figure 9.4.
Mean values of approximately 80 mm are reached for low energetic beams, whereas the
mean of the shower radius of the 200 GeV dataset is 20 mm smaller. Furthermore, the
distributions are narrower for higher energies. Without Gaussian noise, the simulation
on average takes on values smaller than that of the full dataset. By simulating addi-
tional energy via Gaussian noise, the distributions shift to larger radii, achieving a better
agreement with the distributions of the full dataset.
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Figure 9.4.: The distribution for the shower radius for the (20 ↓ 20)tiles ↓ 30layers config-
uration for the full and reduced dataset and simulation with and without
Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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9. Results at Di!erent Energies

Shower Variance

For the shower variance in x-direction, the distributions become narrower and approach
a Gaussian distribution with increasing beam energy, as less events have a high variance,
which can be seen in Figure 9.5 for each beam energy. The distributions for the simulation
agree more with the distributions for the full dataset if Gaussian noise accounts for the
missing energy in the neglected calorimeter cells. The peaks and tails of the simulated
distributions align more with the peaks of the distributions for the full dataset if Gaussian
noise is used. In the z-direction (Figure 9.6), the variance is significantly shifted towards
smaller values in simulation than that of the full dataset. Additionally, the simulation
distributions are narrower. Although the modelling improves slightly after the addition
of Gaussian noise, as the maximum values for the full dataset and simulation align, the
tails and overall shape do not.
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Figure 9.5.: The distribution for the shower variance in x-direction for the (20↓20)tiles↓
30layers configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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Figure 9.6.: The distribution for the shower variance in z-direction for the (20↓20)tiles↓
30layers configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.

Shower Skewness

Similar values for the shower skewness are obtained for the other pion energies compared to
the 40 GeV dataset: negative skewness in x-direction and positive skewness in z-direction,
as seen in Figure 9.7 and 9.8. The distributions in x-direction take on a form with
a more distinct peak for higher energies. The agreement between simulation and data
improves significantly. However, for 200 GeV pions, the addition of Gaussian noise does
not influence the form and shape of the distribution significantly, which is also represented
by the ▷2/NDF value. For smaller energies, the distributions for simulation with Gaussian
noise in z-direction increases the discrepancy between simulation and data. The addition
of Gaussian noise leads to more events with larger values of skewness. However, this
phenomena improves again with higher energy.
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Figure 9.7.: The distribution for the shower skewness in x-direction for the (20↓20)tiles↓
30layers configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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Figure 9.8.: The distribution for the shower skewness in z-direction for the (20↓20)tiles↓
30layers configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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10. Conclusion and Outlook

This thesis investigated a new algorithm for a data-driven fast simulation of hadron show-
ers with test beam data taken with the Ahcal prototype of the Calice Collaboration at
Cern in June 2018. The calorimeter has a total of 38 active layers, with 24 ↓ 24 readout
channels per layer. The pion energies that were used in this thesis are: 20, 40, 60, 80, 120
and 200 GeV. From the datasets, 100000 events were used in the analysis.

The data-based simulation is carried out via KDEs to estimate the PDF of the hit
energies sorted by distance to the event’s CoG in the xy-plane. A kernel function is
assigned to each data point, which is a Gaussian distribution with a mean of zero and a
standard deviation of one. The optimal bandwidth parameter of the KDE was found to
be h = 0.01. 10000 events are extracted from the KDEs for all pion energies.

The approach for the fast simulation is based on the ordering of the calorimeter cells
based on their distance to the event’s CoG in the xy-plane. This allows to put empha-
sis on the tiles in the proximity of the CoG, as more energy will be deposited in this
region, and assigns a lower importance to cells farther away, where, on average, less en-
ergy is deposited. Moreover, this approach avoids the geometrical transformation of the
calorimeter tiles, and consequently of the hit energies. The output of the KDEs is a set of
sorted simulated hit energies. As the KDEs cannot simulate the whole dataset, only the
hit energies within the first 20 layers were considered in the beginning. At a later stage,
various configurations of tiles and layers were introduced to balance information loss due
to neglecting outer tiles and layers.

To assign a tile and layer number to the simulated hit energies, the CoGs in all three
spatial directions were simulated with KDEs. A good agreement between the distributions
of the simulated CoGs and the distributions of the CoGs from data is observable.

From the simulated CoGs, the distances to the calorimeter cells were calculated, and the
tiles were subsequently sorted in ascending order. In the last step, the ordered tiles were
assigned to the ordered hit energies obtained from the simulation with KDEs. The energy
distributions for the sorted tiles showed very good agreement between simulation and data.
A larger energy deposition is expected in the first tiles, as the first tiles correspond to
the tiles closest to the event’s CoG. The larger the distance to the CoG, the less energy
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10. Conclusion and Outlook

is deposited and this is reflected in the energy distributions per tile. Additionally, the
hit energies per tile meet the expectation of average hadronic shower development: at
first, the energy depositions takes place in a small region in the detector. As the particles
propagate and deposit more energy, more tiles are a!ected, the shower spreads out, and an
increase in energy deposition can be observed. Reaching the outer region of the detector,
more tiles in the outer region of the layers are a!ected, while less energy will be deposited
in the outer layers due to the reduction of energy deposition via the particles. This
phenomenon is modelled by the simulation.

Due to the limitations of the KDEs, the whole dataset with its almost 22000 readout
channels cannot be used as an input for the KDEs. Therefore, tiles and layers have been
neglected, in order to reduce the total number of input values that need to be simulated.
Here, the focus lied on the closest 20 ↓ 20 tiles to the CoGX/CoGY for the first 30 layers
of the detector. This reduced dataset was used as the base of the simulation via KDEs.
The last 144 tiles in the first 30 layers and the outer 8 layers were neglected for now. As
the neglection of tiles and layers leads to a reduction of the total energy deposition per
event, the full dataset could not be replicated.

To account for missing energy, Gaussian noise was simulated using the energy distri-
bution of neglected tiles. The integral of these distributions without the bin at zero was
computed, and the mean and standard deviation were determined. If a random number
was equal or smaller than the integral, a Gaussian-sampled non-zero value was assigned
to the tile; otherwise, zero energy was assigned.

The performance of this approach was determined with shower shape variables. In most
cases, the distributions for simulation with Gaussian noise were in good agreement with
the distributions of the full dataset. Therefore, this approach showed good performance
in replicating the shape of the hadronic showers. However, since the distance ordering
focuses only on the distance to the CoG in the xy-plane, limitations were observed for
the shower shape variables in the z-direction. The simulation with and without Gaussian
noise cannot replicate the distributions for the full dataset in this direction. For larger
beam energies, the discrepancy gradually vanishes between the full dataset and simulation.
In contrast, only the shower variance in z-direction exhibits a better agreement between
simulation with Gaussian noise and data at smaller pion energies.

To improve the modelling of the kinematic variables in the z-direction, correlations
between hit energies from Gaussian distributions and the simulated hit energies via KDEs
could be included in the simulation, which have so far been neglected. Furthemore, the
hit energies from the Gaussian distributions have also been generated without internal
correlations. Thus, the inclusion of correlations could result in a better agreement between
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the distributions of the full dataset and the simulation. Additionally, a comparison with
other fast simulation algorithms must be realised, but also with the full simulation. This
will help to compare the performance of this distance-based fast simulation with other
fast simulation approaches and the full simulation.

Fast simulations of hadronic showers will become increasingly vital as complexity and
quantity of data will increase in the future of high-energy physics. More data could lead to
answers for the open questions in particle physics. As detectors improve, such as with the
development of highly granular calorimeters, and as the amount of data will grow steadily,
it is becoming more di#cult to process this data quantity. Therefore, the investigation
and utilisation of e#cient simulation methods will become increasingly important.
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A. Centres of Gravity

A.1. Centres of Gravity - 3D
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Figure A.1.: The distributions of the CoGs in all three directions for (a) data and (b)
simulation with KDEs for 20 GeV pions.
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Figure A.2.: The distributions of the CoGs in all three directions for (a) data and (b)
simulation with KDEs for 60 GeV pions.
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Figure A.3.: The distributions of the CoGs in all three directions for (a) data and (b)
simulation with KDEs for 80 GeV pions.
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Figure A.4.: The distributions of the CoGs in all three directions for (a) data and (b)
simulation with KDEs for 120 GeV pions.
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A.1. Centres of Gravity - 3D
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Figure A.5.: The distributions of the CoGs in all three directions for (a) data and (b)
simulation with KDEs for 200 GeV pions.
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A. Centres of Gravity

A.2. Distributions of the Centres of Gravity

Table A.1.: The mean values and standard deviations of the CoGs in each direction for
20 GeV dataset and respective simulation.

20 GeV CoGX [mm] CoGY [mm] CoGZ [layer]
Data 381 ± 38 373 ± 35 8 ± 3
Simulation 382 ± 38 373 ± 36 7 ± 3

CoGX [tile] CoGY [tile] CoGZ [layer]
Data 13 ± 2 13 ± 2 8 ± 3
Simulation 13 ± 2 13 ± 2 7 ± 3
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Figure A.6.: The normalised distributions for the simultaneously simulated CoGs with
KDEs for 20 GeV pions.
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A.2. Distributions of the Centres of Gravity

Table A.2.: The mean values and standard deviations of the CoGs in each direction for
60 GeV dataset and respective simulation.

60 GeV CoGX [mm] CoGY [mm] CoGZ [layer]
Data 384 ± 30 373 ± 23 10 ± 3
Simulation 384 ± 30 373 ± 23 10 ± 3

CoGX [tile] CoGY [tile] CoGZ [layer]
Data 13 ± 2 13 ± 2 10 ± 3
Simulation 13 ± 1 13 ± 1 10 ± 3
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Figure A.7.: The normalised distributions for the simultaneously simulated CoGs with
KDEs 60 GeV pions.
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A. Centres of Gravity

Table A.3.: The mean values and standard deviations of the CoGs in each direction for
80 GeV dataset and respective simulation.

80 GeV CoGX [mm] CoGY [mm] CoGZ [layer]
Data 383 ± 34 375 ± 24 10 ± 3
Simulation 383 ± 34 375 ± 25 10 ± 3

CoGX [tile] CoGY [tile] CoGZ [layer]
Data 13 ± 2 13 ± 1 10 ± 3
Simulation 13 ± 2 13 ± 1 10 ± 3
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Figure A.8.: The normalised distributions for the simultaneously simulated CoGs with
KDEs 80 GeV pions.
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A.2. Distributions of the Centres of Gravity

Table A.4.: The mean values and standard deviations of the CoGs in each direction for
120 GeV dataset and respective simulation.

120 GeV CoGX [mm] CoGY [mm] CoGZ [layer]
Data 382 ± 17 375 ± 15 11 ± 3
Simulation 382 ± 17 375 ± 16 11 ± 3

CoGX [tile] CoGY [tile] CoGZ [layer]
Data 13 ± 1 13 ± 1 11 ± 3
Simulation 13 ± 1 13 ± 1 11 ± 3
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Figure A.9.: The normalised distributions for the simultaneously simulated CoGs with
KDEs 120 GeV pions.
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A. Centres of Gravity

Table A.5.: The mean values and standard deviations of the CoGs in each direction for
200 GeV dataset and respective simulation.

200 GeV CoGX [mm] CoGY [mm] CoGZ [layer]
Data 371 ± 15 381 ± 12 12 ± 2
Simulation 370 ± 14 381 ± 12 12 ± 2

CoGX [tile] CoGY [tile] CoGZ [layer]
Data 13 ± 1 13 ± 1 12 ± 2
Simulation 13 ± 1 13 ± 1 12 ± 2
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Figure A.10.: The normalised distributions for the simultaneously simulated CoGs with
KDEs 200 GeV pions.
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B. Shower Shape Variables

B.1. Other Compositions - 40 GeV Pions
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Figure B.1.: The distribution for the total energy for the other three configuration for
the full and reduced dataset and simulation with and without Gaussian
noise for 40 GeV pions.
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Figure B.2.: The distribution for the CoGX for the other three configuration for the
full and reduced dataset and simulation with and without Gaussian noise
for 40 GeV pions.

91



B. Shower Shape Variables

0 2 4 6 8 10 12 14 16 18 20 22 24
Tile Number

0

0.1

0.2

0.3

0.4

0.5

N
um

be
r o

f E
ve

nt
s 

(n
or

m
al

is
ed

)

Data (24x24x38)
Data (16x16x38)
Simulation (>0.05 MIP, 16x16x38)
2/NDF = 160.50χ

Simulation (>0.05 MIP, 16x16x38)
with Gaussian Noise
2/NDF = 150.01χ

=40 GeVπE

0 2 4 6 8 10 12 14 16 18 20 22 24
Tile Number

0

0.1

0.2

0.3

0.4

0.5

N
um

be
r o

f E
ve

nt
s 

(n
or

m
al

is
ed

)

Data (24x24x38)
Data (20x20x25)
Simulation (>0.05 MIP, 20x20x25)
2/NDF = 158.22χ

Simulation (>0.05 MIP, 20x20x25)
with Gaussian Noise
2/NDF = 145.89χ

=40 GeVπE

0 2 4 6 8 10 12 14 16 18 20 22 24
Tile Number

0

0.1

0.2

0.3

0.4

0.5

N
um

be
r o

f E
ve

nt
s 

(n
or

m
al

is
ed

)

Data (24x24x38)
Data (24x24x20)
Simulation (>0.05 MIP, 24x24x20)
2/NDF = 150.61χ

Simulation (>0.05 MIP, 24x24x20)
with Gaussian Noise
2/NDF = 144.13χ

=40 GeVπE

Figure B.3.: The distribution for the CoGY for the other three configuration for the
full and reduced dataset and simulation with and without Gaussian noise
for 40 GeV pions.
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Figure B.4.: The distribution for the CoGZ for the other three configuration for the
full and reduced dataset and simulation with and without Gaussian noise
for 40 GeV pions.
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Figure B.5.: The distribution for the central fraction for rhit < 30 mm for the other
three configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 40 GeV pions.
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Figure B.6.: The distribution for the central fraction for rhit < 60 mm for the other
three configuration for the full and reduced dataset and simulation with
and without Gaussian noise for 40 GeV pions.
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Figure B.7.: The distribution for the shower radius for the other three configuration for
the full and reduced dataset and simulation with and without Gaussian
noise for 40 GeV pions.
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Figure B.8.: The distribution for the shower variance in x-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.9.: The distribution for the shower variance in y-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.

0 20 40 60 80 100 120 140 160 180 200
]2Layer Number [Layer

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
um

be
r o

f E
ve

nt
s 

(n
or

m
al

is
ed

)

Data (24x24x38)
Data (16x16x38)
Simulation (>0.05 MIP, 16x16x38)
2/NDF = 4.65χ

Simulation (>0.05 MIP, 16x16x38)
with Gaussian Noise
2/NDF = 4.72χ

=40 GeVπE

0 20 40 60 80 100 120 140 160 180 200
]2Layer Number [Layer

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
um

be
r o

f E
ve

nt
s 

(n
or

m
al

is
ed

)

Data (24x24x38)
Data (20x20x25)
Simulation (>0.05 MIP, 20x20x25)
2/NDF = 192.87χ

Simulation (>0.05 MIP, 20x20x25)
with Gaussian Noise
2/NDF = 96.74χ

=40 GeVπE

0 20 40 60 80 100 120 140 160 180 200
]2Layer Number [Layer

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

N
um

be
r o

f E
ve

nt
s 

(n
or

m
al

is
ed

)

Data (24x24x38)
Data (24x24x20)
Simulation (>0.05 MIP, 24x24x20)
2/NDF = 594.74χ

Simulation (>0.05 MIP, 24x24x20)
with Gaussian Noise
2/NDF = 131.10χ

=40 GeVπE

Figure B.10.: The distribution for the shower variance in z-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.11.: The distribution for the shower skewness in x-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.12.: The distribution for the shower skewness in y-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.13.: The distribution for the shower skewness in z-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.14.: The distribution for the shower kurtosis in x-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.15.: The distribution for the shower kurtosis in y-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.16.: The distribution for the shower kurtosis in z-direction for the other three
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 40 GeV pions.
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Figure B.17.: The distribution for the hit energies for the other three configuration for
the full and reduced dataset and simulation with and without Gaussian
noise for 40 GeV pions.
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B.1. Other Compositions - 40 GeV Pions
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Figure B.18.: The distribution for the number of hits for the other three configura-
tion for the full and reduced dataset and simulation with and without
Gaussian noise for 40 GeV pions.
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B. Shower Shape Variables

B.2. Other Variables for Other Pion Energies
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Figure B.19.: The distribution for the CoGX for the (20 ↓ 20)tiles ↓ 30layers configura-
tion for the full and reduced dataset and simulation with and without
Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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Figure B.20.: The distribution for the CoGY for the (20 ↓ 20)tiles ↓ 30layers configura-
tion for the full and reduced dataset and simulation with and without
Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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B.2. Other Variables for Other Pion Energies
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Figure B.21.: The distribution for the CoGZ for the (20 ↓ 20)tiles ↓ 30layers configura-
tion for the full and reduced dataset and simulation with and without
Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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Figure B.22.: The distribution for the shower variance in y-direction for the (20 ↓

20)tiles ↓ 30layers configuration for the full and reduced dataset and sim-
ulation with and without Gaussian noise for 20, 60, 80, 120 and 200 GeV
pions.
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B. Shower Shape Variables
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Figure B.23.: The distribution for the shower skewness in y-direction for the (20 ↓

20)tiles ↓ 30layers configuration for the full and reduced dataset and sim-
ulation with and without Gaussian noise for 20, 60, 80, 120 and 200 GeV
pions.
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Figure B.24.: The distribution for the shower kurtosis in x-direction for the (20 ↓

20)tiles ↓ 30layers configuration for the full and reduced dataset and sim-
ulation with and without Gaussian noise for 20, 60, 80, 120 and 200 GeV
pions.
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B.2. Other Variables for Other Pion Energies
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Figure B.25.: The distribution for the shower kurtosis in y-direction for the (20 ↓

20)tiles ↓ 30layers configuration for the full and reduced dataset and sim-
ulation with and without Gaussian noise for 20, 60, 80, 120 and 200 GeV
pions.
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Figure B.26.: The distribution for the shower kurtosis in z-direction for the (20 ↓

20)tiles ↓ 30layers configuration for the full and reduced dataset and sim-
ulation with and without Gaussian noise for 20, 60, 80, 120 and 200 GeV
pions.
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B. Shower Shape Variables
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Figure B.27.: The distribution for the number of hits for the (20 ↓ 20)tiles ↓ 30layers
configuration for the full and reduced dataset and simulation with and
without Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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Figure B.28.: The distribution for the hit energies for the (20 ↓ 20)tiles ↓ 30layers config-
uration for the full and reduced dataset and simulation with and without
Gaussian noise for 20, 60, 80, 120 and 200 GeV pions.
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