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Abstract 

Background Milk production traits are complex and influenced by many genetic and environmental factors. 
Although extensive research has been performed for these traits, with many associations unveiled thus far, due 
to their crucial economic importance, complex genetic architecture, and the fact that causal variants in cattle are 
still scarce, there is a need for a better understanding of their genetic background. In this study, we aimed to identify 
new candidate loci associated with milk production traits in German Holstein cattle, the most important dairy breed 
in Germany and worldwide. For that purpose, 180,217 cattle were imputed to the sequence level and large‑scale 
genome‑wide association study (GWAS) followed by fine‑mapping and evolutionary and functional annotation were 
carried out to identify and prioritize new association signals.

Results Using the imputed sequence data of a large cattle dataset, we identified 50,876 significant variants, confirm‑
ing many known and identifying previously unreported candidate variants for milk (MY), fat (FY), and protein yield 
(PY). Genome‑wide significant signals were fine‑mapped with the Bayesian approach that determines the credible 
variant sets and generates the probability of causality for each signal. The variants with the highest probabilities 
of being causal were further classified using external information about the function and evolution, making the pri‑
oritization for subsequent validation experiments easier. The top potential causal variants determined with fine‑
mapping explained a large percentage of genetic variance compared to random ones; 178 variants explained 11.5%, 
104 explained 7.7%, and 68 variants explained 3.9% of the variance for MY, FY, and PY, respectively, demonstrating 
the potential for causality.

Conclusions Our findings proved the power of large samples and sequence‑based GWAS in detecting new associa‑
tion signals. In order to fully exploit the power of GWAS, one should aim at very large samples combined with whole‑
genome sequence data. These can also come with both computational and time burdens, as presented in our study. 
Although milk production traits in cattle are comprehensively investigated, the genetic background of these traits 
is still not fully understood, with the potential for many new associations to be revealed, as shown. With constantly 
growing sample sizes, we expect more insights into the genetic architecture of milk production traits in the future.
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Background
Intensive selection for milk production traits enhanced 
with improved nutrition and management, as well as 
reproductive technologies and accelerated by genomic 
selection (reviewed by [1]) has strongly increased milk 
production over the years [2]. The Holstein breed is 
dominant in milk production worldwide. In Germany, 
the Holstein population alone comprises 2.4 million 
cows, with an average milk yield of 10,000 kg per lacta-
tion [3]. The breeding goal for German Holstein is bal-
anced and includes many traits that can be grouped into 
milk production, health, fertility, and longevity [4]. This 
has not always been the case, and although selection for 
milk production has been successful in increasing milk 
yield, it has also been associated with a higher incidence 
of mastitis, metabolic, and reproductive diseases [5]. The 
relative weight of milk production in total merit indices 
is decreasing as new traits are continuously added to the 
breeding goal. However, because production still makes 
up a substantial part (e.g., 36% in Germany [3]) and 
genetic progress must be monitored in order to avoid the 
risk of a further decline in animal health. More extensive 
knowledge of the genetic architecture of economic traits 
is needed, especially given that the majority of these 
traits are complex traits, influenced by many genes and 
environmental factors.

So far, genome-wide association studies (GWAS) 
have been successful in the discovery of quantitative 
trait loci and candidate genes (reviewed by [6]), how-
ever, only a few causal variants for economically impor-
tant traits in cattle have been confirmed [7, 8]. In order 
to be able to detect potential underlying causal variants, 
whole-genome sequence (WGS) data and large samples 
are needed to ensure sufficient power of GWAS [9, 10]. 
GWAS in cattle is restricted by long-distance linkage 
disequilibrium (LD) segments [11], due to a small effec-
tive population size (Ne) caused by intense selection 
[12], therefore making it hard to pinpoint the true causal 
variant which may be hidden among the many variants 
in LD. Another source of difficulty in revealing the true 
associations is the highly polygenic genetic architecture 
of quantitative traits, i.e., large number of variants with 
small effects affecting the trait [13]. Large samples of 
sequenced animals, required for powerful GWAS, are 
generally not available. To overcome this, imputation [14] 
can be utilized as a method to obtain the sequence-dense 
data. Imputation methods exploit LD patterns among 
the individuals in the sample and reference dataset and 
infer the information about untyped variants based on 
a smaller number of available genotyped markers [15]. 
Imputation accuracy depends on various factors such as 
the size of the reference panel, the relationship between 
the individuals in the reference and sample dataset, 

imputation software choice, the number of the vari-
ants to be imputed, and minor allele frequency (MAF) 
of variants [16–19]. In cattle, sequence-level imputa-
tion is usually performed in two steps, due to higher 
accuracy obtained when first imputing from a lower to 
a higher-density SNP chip, and then to sequence level 
[18]. With the numbers of cattle genotyped and subse-
quently imputed constantly growing, there is a need for 
software that can handle such an amount of information. 
In human studies, several GWAS software [20–22] have 
been developed to enable analyzing large samples (e.g., 
tens to hundreds of thousands of individuals).

To exploit the power of large sample sizes in detecting 
novel causal loci, we carried out GWAS for three milk 
production traits using imputed sequence data. After 
obtaining GWAS summary statistics with a mixed linear 
model approach (MLMA), meta-analysis was utilized to 
pool the results of different animal groups. For this pur-
pose, we evaluated different meta-analysis approaches 
implemented in METAL [23]. In addition, we tested 
two software that enable the use of large sample sizes in 
GWAS; fastGWA [20] and SAIGE [21]. Genome-wide 
significant variants were further fine-mapped to iden-
tify potential causal associations, which were eventually 
annotated and ranked based on their functional and evo-
lutionary significance according to Xiang et al. [24]. Can-
didate gene research was performed for genes located 
close to potential causal variants. Finally, the percentage 
of genetic variance explained by the candidate causal var-
iants was calculated to see which proportion of the vari-
ance could be attributed to novel candidate variants.

Methods
Dataset
The dataset for imputation consisted of 180,217 German 
Holstein cows, belonging to a larger dataset, with 45,613 
SNP markers. Animals were mainly genotyped with vari-
ous low-density SNP genotyping arrays (see Additional 
file  1: Table  S1) and then imputed to 50K level accord-
ing to the national genetic evaluation procedure [25], or 
genotyped with various 50K SNP chips (see Additional 
file  1: Table  S1). The dataset was collected during the 
KuhVision project that aimed to genotype and phenotype 
German Holstein cows to establish a large-scale female 
reference population for genomic evaluation. The pheno-
types for milk (MY), fat (FY), and protein yield (PY) in kg 
were obtained in the form of deregressed proofs (DRPs) 
[26], produced using the special single-step SNP BLUP 
model for deregressing genomic estimated breeding val-
ues (GEBV) [27]. Reliabilities of DRPs were similar across 
the animals and traits, therefore weighting was not used 
in GWAS.
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Imputation
The genomic coordinates of the input genotypes were 
lifted from the previous bovine reference genome assem-
bly UMD3.1 [28] to the ARS-UCD1.2 assembly [29] with 
a custom approach that uses conversion tables. The sam-
ple of 180,217 cows consisting of 29 autosomal pairs was 
imputed to sequence level (78,364,991 variants) in a two-
step imputation approach using BEAGLE v. 5.2 [30]. The 
effective population size parameter was set to 1000. The 
animals were first imputed to high-density (HD) genotype 
level using the genotype data of 1278 Holstein cows con-
sisting of 585,517 markers [31]. The HD reference panel 
was phased using BEAGLE v. 5.1 beforehand [32]. In the 
next step, data were imputed to the WGS level using the 
multi-breed reference panel from the 1000 Bulls Genome 
Project Run9 [33]. The reference panel consisted of 5116 
cows and bulls of the species Bos taurus (see Additional 
file  1: Table  S2). Both imputation steps were performed 
chromosome-wise, with the samples divided into random 
groups of approximately equal size (≈5255 individuals), 
due to high computational requirements. The imputed files 
were indexed afterwards with IndexFeatureFile, GATK v. 
4.2.2.0 [34], merged by the sample groups, and multi-allelic 
variants (SNPs, insertions, and deletions) were split into bi-
allelic sites using BCFtools v. 1.14 [35]. As a quality control, 
the imputed WGS dataset was filtered using the dosage 
R-squared parameter, a measure of the estimated squared 
correlation between estimated and true allele dosage (DR2; 
[36]). Markers imputed with DR2 < 0.75 were removed with 
BCFtools, leaving 21,812,477 markers for further analyses. 
The imputed WGS dataset was annotated with Varian-
tAnnotator from the GATK v. 4.2.2.0 using the Ensembl 
variation database, release 105 [37] imported from dbSNP 
[38], to account for SNPs without reference SNP cluster ID 
(rsID).

GWAS
GCTA and METAL
The sample for GWAS consisted of 180,217 WGS-
imputed cows with phenotypic observations for MY, FY, 
and PY. Due to memory restrictions of the used high-
performance computing (HPC) cluster, the samples were 
divided into 4 groups consisting of ≈45,000 animals each. 
GWAS was performed using the GCTA software v. 1.93.2 
beta [39] applying a mixed linear model approach for all 
autosomes. Samples were filtered for MAF lower than 
0.01 while running the MLMA, leaving 17,256,703 vari-
ants for GWAS. The SNP effects were estimated using 
the following model:

where y is a vector of DRPs; b is the vector of fixed effects 
of the variant tested for the association with each trait; X 

(1)y = Xb+ Zu + e,

is the incidence matrix of b ; u is the vector of polygenic 
effects with u ∼ N (0,Gσ 2

u ) , where G is genomic rela-
tionship matrix (GRM) calculated using 33,009 variants 
from 50K SNP chip from all autosomal chromosomes, 
filtered for MAF lower than 0.01, and σ 2

u  is a variance of 
polygenic effects; Z is the incidence matrix of u ; and e is 
the vector of residual effects with e ∼ N(0, Iσ 2

e ) , with I 
being an identity matrix and σ 2

e  residual variance. Bon-
ferroni correction was used to set a genome-wide sig-
nificance threshold, corresponding to a p-value of 0.05/
number of markers (2.897 ×  10–9). The Manhattan plots 
were created with packages readr [40], ggrepel [41], 
ggplot2 [42], RColorBrewer [43] and dplyr [44] using 
RStudio v. 4.2.2 [45].

METAL software [23] for meta-analysis was used 
to merge the GWAS summary statistics of each of the 
four animal groups per trait. METAL implements two 
methods, sample size and an inverse-variance-based 
approach [23]. For simplification, we will refer to the 
sample size-based approach as the z-score approach 
throughout the text. We applied both approaches, 
examining at the same time the impact of additional 
settings, namely fixed effects or random effects, with 
and without sample size weighting. Subsequently, the 
genomic correction was carried out on meta-analyzed 
files by loading meta-analysis results into METAL, to 
correct for inflation. Lambda (λ) values were calculated 
as the median of observed χ2 test statistics divided by 
the expected median of χ2 distribution with one degree 
of freedom.

fastGWA and SAIGE
To assess the possibility of fitting all animals into GWAS 
at once, and avoid division into smaller groups, we 
tested two software designed for handling large-scale 
data. The software were tested on Bos taurus autosome 
(BTA) 14 and for the trait MY. The fastGWA application 
[20], implemented in GCTA [39] is a resource-efficient, 
mixed linear model (MLM) based tool, which utilizes a 
sparse GRM to account for relatedness [20]. The sparse 
GRM was created from autosomal 50K SNP chip full-
dense GRM with --make-bK-sparse 0.05 that sets all off-
diagonal elements less than 0.05 to 0. GWAS was run 
on 679,933 markers on BTA14 and 180,217 individuals, 
with MAF filtering for variants lower than 0.01, using the 
sparse GRM and --fastGWA-mlm command.

SAIGE, an R-based scalable and accurate generalized 
mixed model tool [21] that efficiently performs on both 
binary and quantitative traits, is able to handle large data-
sets, and can account for sample relatedness. The gener-
alized mixed linear model used here can be described as 
follows:
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where yi is a vector of phenotypes for the ith individual; 
1 × (1 + p) Xi represents p covariates including the inter-
cept; α is a (1 + p) × 1 vector of fixed effects; bi is a ran-
dom effects vector with distribution N (0, τψ) , where 
N denotes sample size, ψ is an N × N GRM, and τ is the 
additive variance, and finally, εi is a vector of random 
residual errors [21]. We used SAIGE v. 1.3.1 and R v. 4.3.3 
to perform the analyses. The first step included fitting of 
a null linear mixed model using a full GRM calculated 
from a 50K SNP chip. The first four principal components 
(PC) from BTA14 were extracted using the approxima-
tion method [46] implemented in PLINK v. 2.0 [47], as 
recommended for large samples, and included as covari-
ates. Before calculating the PCs, variants in high link-
age disequilibrium on BTA14 were pruned with PLINK 
v. 1.9 [48], based on pairwise R2 correlation greater than 
0.1 (--indep-pairwise 50 10 0.1). We performed a single-
variant test on BTA14 with LOCO = FALSE, and default 
quality control settings including MAF = 0 and minor 
allele count (MAC) of 20. Additionally, we tested the per-
formance of the method with filtering for MAF = 0.01 
and MAC = 3605, to eliminate rare variants. Analyses 
were performed using the scripts provided by the soft-
ware developers; “step1_fitNULLGLMM.R” and “step2_
SPAtests.R”. More details are available at https:// saige git. 
github. io/ SAIGE- doc/ docs/ single. html.

Downstream analyses
To identify potential causal variants among the genome-
wide significantly associated variants, fine-mapping of 
independent QTL regions, and additionally, of all sig-
nificant signals per chromosome, was conducted with 
BFMAP v. 0.65 [49]. Independent regions for fine-map-
ping were determined with PLINK v. 1.9 [48] clump-
ing analysis on genome-wide significant variants. The 
parameters applied included an LD threshold of 0.2 and a 
physical distance threshold for clumping of 500 kb. Fine-
mapping was carried out for all 180,217 samples. BFMAP 
is a Bayesian-based software tool that utilizes a forward 
selection approach, including adding independent sig-
nals in the model, repositioning signals, and generating 
a credible list of variants for each association signal [49]. 
Each variant in the credible set is also assigned with a 
posterior probability of causality (PPC).

SnpEff [50] and SnpSift [51] were utilized for the func-
tional annotation of credible variant sets and prediction 
of their effect on genes, as well as the identification of 
the closest genes. Candidate regions were investigated 
through the Animal Quantitative Trait Loci database 
(Animal QTLdb) Release 54 (last accessed 2 November 
2024), which reports the known candidate variants and 

(2)g
(

yi
)

= Xiα+ bi + εi,
genes [52], and using publications previously associ-
ated with milk production traits. A BLAST/BLAT [53, 
54] search from Ensembl release 112 was used to make 
a comparison of transcript sequences against the human 
genome. Venn diagrams of common candidate variants 
were created using the R package VennDiagram [55]. 
Functional-And-Evolutionary Trait Heritability (FAETH) 
scores [24] were assigned to potential causal variants. 
Xiang and colleagues [24] established the FAETH frame-
work by performing multiomics analyses of large cat-
tle datasets. Ruidong Xiang provided us with FAETH 
scores and variant categories. Xiang et al. [24] estimated 
the variance explained by 13 variant categories across 34 
complex traits in dairy cattle, and calculated the FAETH 
scores of more than 17 million sequence variants based 
on their expected contribution to genetic variance, by 
combining the results from all traits and all variant cat-
egories. Variant categories included both experimental 
and previously published datasets. Categories from [24] 
used for annotation and ranking of variants in this paper 
included: exon expression QTLs (eeQTLs), gene expres-
sion QTLs (geQTLs), and splicing QTLs (sQTLs) discov-
ered from the liver, muscle, white blood, and milk cells 
as published in [56], allele-specific expression QTLs (ase-
QTLs) from white blood and milk cells [57], polar lipid 
metabolite QTLs (mQTLs) of various metabolite pro-
files from bovine milk fat [24], and chromatin immuno-
precipitation sequencing (ChIPseq) data from liver [58], 
muscle [59] and mammary gland [24]. Xiang et  al. [24] 
determined conserved sites (conserved) based on lifted 
over human genome sites and using the PhastCon soft-
ware [60], according to information about conservation 
between 100 vertebrate species. The selection signature 
(selection.sig) category indicated variants with higher 
frequency in dairy than in beef breeds, detected from a 
multi-breed beef and dairy GWAS [24], and young vari-
ants (young) denoted variants that were the subject of 
recent selection, based on their proportion of positive 
correlations with rare variants [24]. Variants determined 
through fine-mapping that were present in Xiang’s data-
set were given functional and evolutionary annotation 
and FAETH scores.

The percentage of genetic variance explained by the 
(1) credible sets generated by BFMAP, as well as by (2) 
top candidate variants, and by (3) random variants, was 
estimated using GCTA’s genomic-relatedness-based 
restricted maximum-likelihood (GREML) approach [61], 
by fitting the GRMs together in the model with 50K SNP 
chip variants. Random variants were chosen arbitrarily, 
across all autosomal chromosomes in a way that their 
number corresponded to the number of variants identi-
fied in all credible sets and top causal variants categories 
for each trait. The analysis was done for one of the four 

https://saigegit.github.io/SAIGE-doc/docs/single.html
https://saigegit.github.io/SAIGE-doc/docs/single.html
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groups of ~45,055 animals due to high computational 
demand.

All the analyses were performed on the Scientific Com-
pute Cluster (SCC), the high-performance computing 
system of the of the Gesellschaft für wissenschaftliche 
Datenverarbeitung mbH Göttingen (GWDG). The Scien-
tific Linux 7.9 (Nitrogen) was used as an operating sys-
tem with the x86_64 architecture and Intel(R) Xeon(R) 
Silver 4214 as a central processing unit (CPU) with a base 
frequency of 2.20 GHz. Performance of different GWAS 
software and BFMAP were assessed with Snakemake v. 
7.22 [62] and with slurm built-in sacct command.

Results
Imputation
Imputation quality control was carried out by utiliz-
ing the DR2 parameter, built into the BEAGLE software. 
Markers imputed with DR2 < 0.75 were removed with 
BCFtools. Then, we checked the DR2 values of known 
causal variants, such as two variants in the DGAT1 gene 
[63], which were imputed with almost perfect quality 
(DR2 = 0.99), as well as rs385640152 in the GHR gene 
[8] with DR2 = 0.98, and rs211210569 in MGST1 [64, 65] 
with DR2 = 1.

GWAS
A large number of variants exceeded the genome-wide 
significance threshold, regardless of the software used. 
Following are the results for each method that we used, 
with particular attention to genomic inflation and mem-
ory and time requirements utilized. First, we report the 
results of method performance testing (‘benchmarking’) 

on BTA14 and MY for each software, describing the com-
putational requirements. Then we describe the detailed 
results of the method that showed the best performance, 
and in the end, we do a comparison of GWAS results 
obtained with different methods.

fastGWA 
Using fastGWA, we were not able to obtain the results 
of GWAS on BTA14, due to both high memory and time 
requirements. After running for 120  h on a computing 
platform with 1.5  TB RAM (Random Access Memory) 
and 10 cores (Table 1), fastGWA did not manage to pro-
duce the results within the time limit of the HPC cluster. 
This process used a maximum resident set size (max RSS) 
of 723.176 GB and 4,321,150 s of CPU time (Table 1).

SAIGE
The GWAS for MY on BTA14 using SAIGE with default 
filtering settings identified 320,637 significant variants 
out of the 668,200 variants tested. We obtained GWAS 
results after running a generalized mixed linear model 
analysis for 55 min, on a 384 GB RAM platform with 48 
cores (Table 1). The max RSS, denoting the peak amount 
of RAM the process held, was 0.611 GB (Table 1). A large 
number of variants had very low p-values, with top vari-
ant rs208417762, located within the ADCK5 gene with a 
p-value of 1.3 ×  10–3467. However, these very low p-values 
seemed to be the result of huge inflation (λ = 56.049). 
To check if different quality control parameters have an 
impact on inflation levels, we also run GWAS on BTA14 
with MAF filtering of 0.01, and a MAC of 3605. This 
MAC cutoff was inferred based on previously obtained 

Table 1 Performance of different software and methods for GWAS of MY on BTA14

Method = GWAS method on which benchmarking was done (without GRM calculation step)

Sample number = number of samples utilized in analysis

Time (h:m:s) = wall clock time used to finish the analysis or to reach the set time limit (120 h)

Max RSS (GB) = max RSS in GB

CPU time (s) = CPU time in seconds

Processor = CPU & graphics processing unit (GPU) used for analysis

CPU cores = number of CPU cores per processor

Mem (GB) = memory in GB available per processor
a Default settings (MAF = 0, MAC = 20)
b Arbitrary settings (MAF = 0.01, MAC = 3605)

Software Method Sample number Time (h:m:s) Max RSS (GB) CPU time (s) Processor CPU cores Mem (GB)

GCTA MLMA 45,055 23:01:40 85.148 820,581.06 2 × Xeon E5‑2650 v4 12 512

GCTA MLMA 180,217 120:00:28 1283.44 432,123 4 × Xeon E5‑4620 v3 10 1536

GCTA fastGWA (MLM) 180,217 120:00:19 723.176 4,321,150 4 × Xeon E5‑4620 v3 10 1536

SAIGE Null linear mixed 
 modela

180,217 00:55:35 0.611 78,600 2 × Xeon Platinum 
9242

48 384

SAIGE Null linear mixed 
 modelb

180,217 00:53:34 0.605 77,136 2 × Xeon Platinum 
9242

48 384
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SAIGE’s summary statistics on BTA14 with default set-
tings, where the variants with MAF of 0.01 had MAC of 
3605. This resulted in a higher percentage of significant 
variants, with 307,853 significant signals out of 517,315 
variants tested, and in even higher inflation (λ = 104.226) 
than when default settings were used. The top SNP was 
again rs208417762, with the same p-value of 1.3 ×  10–3467. 
Computational resources were the same as for the default 
setting approach (Table 1).

GCTA and METAL
The MLMA approach in GCTA applied on 180,217 sam-
ples and BTA14 did not manage to produce results within 
5 days on a 1536 GB RAM computing platform (Table 1).

Therefore, samples were divided into four random 
groups whose sizes ranged from 45,053 to 45,055, and 
MLMA was performed for each of the sample groups. 
For BTA14, this required 23  h of wall clock time and 
820,581.06 s of CPU time on a computing platform with 
512 GB and 12 CPU cores, as shown on the example of 
one of the groups in Table  1. The reason for dividing 
the samples into four groups was the fact that any divi-
sion into smaller number of groups (e.g., two groups of 
~90,000 samples or three groups of ~60,000 samples) 
failed to deliver the results within the 5-day time limit, 
similar as described when fitting all animals.

This approach was subsequently applied to all autoso-
mal chromosomes and all traits. Results obtained using 
GCTA’s MLMA on all autosomal chromosomes were 
merged using different METAL approaches and settings. 
Genome-wide significant variants and genomic inflation 
values of individual animal groups across all autosomes, 
before meta-analysis, are available in the Additional 
file  1: Table  S3. The approaches used for meta-analysis 
were z-score and inverse variance, with and without 
sample size weighting and with fixed or random effects. 

Regardless of the meta-analysis approach used, the 
results were more or less the same regarding the number 
of significant variants and inflation levels, as shown with 
MY as an example (Table  2). Z-score and inverse vari-
ance approaches differed slightly in the number of sig-
nificant variants, while all approaches gave the same level 
of genomic inflation (λ = 1.76). The variants that passed 
the genome-wide significance threshold were almost 
identical in both z-scores and inverse variance approach, 
despite the type of effect used and weighting. There was 
no difference in the number of significant variants within 
the z-score and the inverse-variance-based approach, 
regardless of additional settings applied (sample-size 
weighting, type of effects used). A small difference in the 
number of significant variants was observed when com-
paring z-score and inverse-variance-based approaches, 
both before and after genomic correction. Variants that 
remained significant after correction were nearly iden-
tical, with 20,574 variants in common between the 
two approaches (Fig.  1). Through the inverse-variance 
approach, we obtained 20,598 significant variants for 
MY, while z-scores gave 20,594 genome-wide significant 

Table 2 Number of genome‑wide significant variants and inflation factors obtained with different meta‑analysis approaches for MY

λ = genomic inflation factor

nTOP = number of genome-wide significant variants

λGC = genomic inflation factor after genomic correction

nTOP_GC = number of genome-wide significant variants after genomic correction

Approach λ,  nTOP λGC,  nTOP_GC

Z‑score weighted, fixed effects λ = 1.76,  nTOP = 54,032 λGC = 1,  nTOP_GC = 20,594

Z‑score weighted, random effects λ = 1.76,  nTOP = 54,032 λGC = 1,  nTOP_GC = 20,594

Z‑score non‑weighted, fixed effects λ = 1.76,  nTOP = 54,032 λGC = 1,  nTOP_GC = 20,594

Z‑score non‑weighted, random effects λ = 1.76,  nTOP = 54,032 λGC = 1,  nTOP_GC = 20,594

Inverse‑variance weighted, fixed effects λ = 1.76,  nTOP = 53,861 λGC = 1,  nTOP_GC = 20,598

Inverse‑variance weighted, random effects λ = 1.76,  nTOP = 53,861 λGC = 1,  nTOP_GC = 20,598

Inverse‑variance non‑weighted, fixed effects λ = 1.76,  nTOP = 53,861 λGC = 1,  nTOP_GC = 20,598

Inverse‑variance non‑weighted, random effects λ = 1.76,  nTOP = 53,861 λGC = 1,  nTOP_GC = 20,598

Fig. 1 Concordant and discordant variants between inverse variance 
and z‑score approach
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markers. In total, 24 genome-wide significant variants 
were unique for the inverse-variance approach and 20 
unique for the z-score approach. All of the approach-
unique genome-wide significant variants appeared to be 
slightly below the Bonferroni threshold (2.897 ×  10–9) in 
the other approach; for example, SNP rs210459588 had 
a p-value of 2.86 ×  10–9 with inverse variance approach, 
and was significant there, while in the z-score approach 
the same SNP had a slightly higher p-value of 2.92 ×  10–9 
and was not significant there.

We proceeded with the weighted z-score approach 
with fixed effects across all autosomal chromosomes. 
Before applying correction for genomic inflation meta-
analyzed GWAS datasets identified 54,032 significant 
variants for MY, 42,323 for FY, and 35,106 for PY, with 
the highest number of associations on chromosomes 5, 
6, and 14. Low p-values were observed for many SNPs, 
with top variants positioned on the BTA14: rs109050667 
(p = 7.04 ×  10–737), rs136630297 (p = 7.18 ×  10–380), and 
rs109050667 (p = 2.38 ×  10–221) for MY, FY, and PY, 
respectively. Lambda values, calculated to assess for 
false associations were as follows: λMY = 1.76, λFY = 1.90, 
and λPY = 1.93. The reason for increased genomic infla-
tion factors was due to the meta-analysis that inflated 
the p-values and therefore the number of genome-wide 
significant variants. To assess the effect of the meta-anal-
ysis on inflation we divided the individuals from direct-
GWAS summary statistics into smaller groups, running 
the GWAS for each of these groups again, and merg-
ing them into a meta-analysis. The lambda values were 
higher after merging the animals into meta-analysis com-
pared to direct GWAS summary statistics for the same 
individuals (see Additional file 2: Figure S1).

After applying post-meta-analysis genomic correction 
on all three traits, as implemented in METAL, 20,594 
genome-wide significant variants remained for MY, 
17,054 for FY, and 13,228 for PY. The top variants for all 
traits remained the same as before genomic correction, 
with somewhat higher p-values. The number of signifi-
cant associations per chromosome, with p-values of top 
variants for each trait, are shown in Table 3.

Top variants were found in or in proximity to previously 
described milk production and composition genes. For 
MY, the top variants on chromosomes with the highest 
number of significant SNPs were located near or within 
MGST1 [64–67] on BTA5, GC [68–70] and NPFFR2 [71, 
72] on BTA6, ADCK5 [73–75], CPSF1 [74, 76], SLC52A2 
[74], SLC39A4 [74], FBXL6 [75], TMEM249 [75, 77] and 
SCRT1 [78] on BTA14, and GHR [8, 79] on BTA20. For 
FY, top variants were located in or in the proximity of 
MGST1 on BTA5, GC and NPFFR2 on BTA6, and CPSF1, 
SLC39A4, ADCK5, TMEM249, SCRT1, SLC52A2 and 
FBXL6 on BTA14. The genes located within the most sig-
nificant genomic regions for PY were: ADCK5, CPSF1, 
FBXL6, SLC52A2, TMEM249 and SLC39A4 on BTA14, 
GC, NPFFR2, ENSBTAG00000049290 [80] and SLC4A4 
[72, 73] on BTA6, and ABCC9 [72, 73, 81] on BTA5. 
Manhattan plots of GWAS results after genomic correc-
tion are shown in Figs. 2, 3 and 4.

Many variants were found to be associated with mul-
tiple traits, as shown on the Venn diagram (Fig. 5). The 
highest number of common candidate variants were 
found between MY and FY (8834). The second highest 
number of common candidate variants was between MY 
and PY (6744), 5270 variants were in common for FY and 
PY, and 5062 variants were in common for all three traits.

Table 3 Number of significant variants per chromosome and top p‑values for MY, FY, and PY

nTOP = number of significant variants

MY FY PY

Chr nTOP P-value Chr nTOP P-value Chr nTOP P-value

3 375 1.371 ×  10–22 2 3 2.098 ×  10–09 5 882 1.044 ×  10–29

5 4344 5.286 ×  10–79 5 10,237 2.92 ×  10–104 6 9571 1.7 ×  10–59

6 4865 1.132 ×  10–59 6 2775 8.877 ×  10–34 11 277 9.977 ×  10–15

10 113 2.85 ×  10–12 14 3524 3.48 ×  10–201 14 2421 8.65 ×  10–116

11 469 1.345 ×  10–17 15 28 4.049 ×  10–15 19 30 5.053 ×  10–13

14 6335 7.94 ×  10–419 19 221 1.095 ×  10–17 27 46 1.181 ×  10–11

15 4 2.022 ×  10–09 26 117 1.213 ×  10–13 29 1 1.042 ×  10–09

16 8 4.154 ×  10–10 27 23 2.387 ×  10–12

19 21 4.967 ×  10–10 28 126 1.079 ×  10–11

20 4041 1.898 ×  10–54

28 7 3.257 ×  10–10

29 12 6.657 ×  10–11
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Additionally, as proof of concept, we examined if 
there is an overlap in significant variants on BTA14 
between the GCTA and METAL-based approach and 
SAIGE. We describe results obtained on SAIGE with 

default quality control settings (MAF = 0, MAC = 20), 
since this approach resulted in smaller inflation, 
compared to the other one that filtered out rare vari-
ants. There were 6284 significant variants in common 

Fig. 2 Manhattan plot for milk yield. The top genome‑wide SNP (p = 7.94 ×  10–419) for MY was located on BTA14. However, RStudio used 
for the creation of this plot was not able to show p‑values < 3 ×  10–324, reporting them as “0”

Fig. 3 Manhattan plot for fat yield
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between GCTA combined with METAL and the 
SAIGE approach on BTA14 (Fig. 6), making almost all 
significant variants found with GCTA significant in 
the SAIGE approach as well. The Pearson correlation 
coefficient between the p-values of 6284 shared signals 
obtained with the two methods was 0.065, indicating a 
positive but very weak correlation.

Downstream analyses
Genome-wide LD clumping resulted in a large num-
ber of independent regions (≈500 clumps across all 
the chromosomes and traits), whose fine-mapping was 
computationally unfeasible. Therefore, fine-mapping 
was applied to genome-wide significant variants, per 
chromosome. For example, fine-mapping of significant 
variants on BTA14 used more than 11  h of wall clock 
time, approximately 257 MB of peak memory usage, and 
155,504 s of CPU time. BFMAP formed credible variant 
sets for each independent association, giving each vari-
ant PPC, which resulted in a list of more than 6000 can-
didate variants. The majority of variants were identified 
in introns or intergenic regions (see Additional file  1: 

Fig. 4 Manhattan plot for protein yield

Fig. 5 Venn diagram of MY, FY, and PY showing concordant 
and discordant genome‑wide significant variants

Fig. 6 Venn diagram showing common genome‑wide significant 
variants between SAIGE and GCTA + METAL approach
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Table  S4). The number of predicted effects was larger 
than the actual number of variants, due to genes with 
multiple transcripts and variants which affect multiple 
genes. Regarding the variant impact on proteins, a high 
majority of variants were classified as modifiers, 33 
variants had a moderate impact, and only one variant, 
found for PY (rs209618726), was high-impact. The list 
of all variants generated by BFMAP and their effects on 
proteins as well as closest genes, is available in Addi-
tional file 3: Table S5-S7. Variants with PPC ≥ 0.05 were 
further examined in more detail (see Additional file 4: 
Table S8). The majority of these variants were found on 
BTA5 (76), BTA14 (71) and BTA6 (48). These poten-
tial causal variants were located in or in proximity to 
143 genes, of which the majority were known, while a 
few were previously undescribed genes for milk pro-
duction traits (see Additional file 4: Table S8). Some of 
the known genomic regions for milk production traits 
included MGST1, SLC15A5 and ABCC9 on BTA5, GC 
and NPFFR2 on BTA6, ADCK5 and CPSF1 on BTA14, 
STAT5B on BTA19, and GHR with a known causal 
variant for milk yield and composition, rs385640152 
[8], ranked as the top causal variant with PPC ≈ 1 on 
BTA20 for MY. The fine-mapped associated candidate 
regions mainly corresponded to regions associated with 
GWAS top variants.

There were ~13 million variants in common between 
our imputed dataset and Xiang’s dataset, providing the 
functional annotation and FAETH score ranking to a rea-
sonable variant number. Of 324 variants with PPC ≥ 0.05, 
we were able to assign FAETH scores to 205 variants (see 
Additional file 4: Table S8). The FAETH scores for these 
variants ranged from 3 to 17,341,551.5. Xiang et al. [24] 
considered all variants that were positioned within the 
top 1/3 of the FAETH score ranking as high ranked. Of 
205 variants with assigned FAETH scores, 143 variants 
met these criteria. Of these, 98 variants fall into at least 
one of the functional and evolutionary variant sets, while 
47 of them fall into more than one category. Variants 
with the highest FAETH score belonged to more than 
one functional and evolutionary category. Overall, the 
largest number of variants were assigned to sQTL (46) 
and ChIPseq (35) categories. 19 variants belonged to con-
served sites, 26 to aseQTL, 20 to mQTL, 30 to eeQTL, 8 
to geQTL, and 2 variants were categorized as young (see 
Additional file 4: Table S8). None of the 143 high-ranked 
variants was enriched in the selection.sig category. To 
our knowledge, of 143 variants with high FAETH scores, 
65 were novel (Table  4) while others were previously 
reported for milk production traits in AnimalQTLdb.

The percentage of genetic variance explained by 
all credible sets variants, as well as by variants with 
PPC ≥ 0.05, was estimated for all three traits (Table  5). 

For MY, 4277 variants from 12 chromosomes explained 
31.32% of the variance. Top candidate variants from 12 
autosomal chromosomes explained 11.46% of the vari-
ance. For FY, 1035 credible sets variants from nine chro-
mosomes accounted for 16.61% of the genetic variance, 
while the top 104 variants from seven chromosomes 
explained 7.74%. For PY, 10.29% of the variance was 
explained by 1122 of all variants generated by BFMAP 
from 7 chromosomes, and 3.93% was explained by 68 
highest-ranking variants. Random variants explained 
1.18% of the variance for 4277 arbitrarily chosen variants, 
0.73% for 1035, 0.43% for 1122 variants, 0.13% for 178, 
0.0001% for 104, and 0.14% for 68 variants.

Discussion
In this paper, we imputed and performed GWAS and 
fine-mapping using a huge amount of data, regarding 
both sample sizes and number of markers. Previously, 
Jiang et  al. [72] and Liang et  al. [82] analyzed an even 
larger number of cattle, however with a smaller amount 
of markers. Reynolds et  al. [83] performed GWAS for 
milk traits on 124,000 cattle, being one of the first with 
similar sample size to ours. To our knowledge, this is the 
largest cattle GWAS to this day, taking into consideration 
both sample sizes and the number of markers analyzed. 
We present advantages and challenges encountered when 
working with this large amount of data.

Imputation
We performed a stepwise imputation of 180,217 Ger-
man Holstein cows from SNP chip up to sequence level. 
The stepwise imputation approach seems to improve the 
imputation accuracy, as previously shown in cattle [18, 
84]. Imputation error rate tends to decrease when an 
intermediate reference panel is used [84], possibly due 
to a larger choice of possible haplotype matches between 
WGS and medium-density SNP chip, which are nar-
rowed down when using an HD panel as an intermediate 
[18]. In our study, stepwise imputation was done using 
the Holstein breed HD panel, a subset from van den Berg 
et  al. [31] as an intermediate step, and the WGS panel 
from the 1000 Bulls Genome Consortium, as a second 
step. The WGS-based panel consisted of various breeds 
of taurine cattle (see Additional file  1: Table  S2). The 
usage of a multi-breed reference was shown to increase 
the imputation accuracy in many studies [85–88], espe-
cially for low-frequency variants [86]. However, multi-
breed panels can be counter-productive if animals in the 
reference panel are too distant from the sample dataset 
[89, 90]. The usage of BEAGLE software for imputation 
can at least partly overcome this issue since its algorithms 
can prioritize between closer and genetically more dis-
tant individuals in the multi-breed reference panel [91]. 
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Table 4 List of new candidate variants with highest FAETH ranking for MY, FY and PY

SNP ID Chr Pos Trait PPC Gene ID FAETH ranking FAETH category

rs211682484 14 512,818 MY 1 VPS28 3712 eeQTL, mQTL, sQTL

rs211282001 19 26,084,321 PY 0.049 DERL2, DERL2‑DHX33 5195 aseQTL, sQTL, conserved

rs482282570 14 515,265 FY 1 VPS28, VPS28‑ENSBTAG00000053637 19,351.5 eeQTL, mQTL

rs43322204 2 107,437,210 FY 0.504 ENSBTAG00000052917 20,326 eeQTL, ChIPseq, conserved

rs109154013 2 107,436,884 FY 0.445 ENSBTAG00000052917, GMPPA, GMPPA‑ASIC4 20,326 eeQTL, ChIPseq, conserved

rs110860915 14 269,611 FY 0.469 ZNF16 38,437 aseQTL, mQTL

rs42144935 28 34,583,251 FY 0.213 ENSBTAG00000051468‑ENSBTAG00000053285 73,845.5 conserved

rs379835038 16 1,790,685 MY 0.164 ENSBTAG00000052913‑SOX13 103,244 sQTL, conserved

rs42364317 15 73,957,297 FY 0.157 HSD17B12 115,542 conserved

rs379781983 19 42,251,886 MY 0.320 RAB5C, DHX58, KAT2A 121,117.5 conserved

rs109914138 5 111,918,900 MY, PY 0.065, 0.126 MRTFA‑ENSBTAG00000042762 130,714.5 conserved

rs110629954 6 86,624,871 FY 0.067 SLC4A4 170,586 conserved

rs383905919 11 63,499,172 MY 0.076 RAB1A 185,467 ChIPseq, conserved

rs132823555 14 301,588 MY 0.347 ZNF16‑C14H8orf33 443,756.5 eeQTL, sQTL

rs133929619 6 85,437,733 MY 0.517 CSN1S1‑CSN2 448,308 eeQTL, sQTL

rs110400525 6 85,437,683 MY 0.329 CSN1S1‑CSN2 448,308 eeQTL,sQTL

rs43473266 6 86,442,746 FY 0.971 SLC4A4 479,810.5 eeQTL, sQTL

rs42193880 29 48,861,569 MY 0.083 KCNQ1 599,714.5 aseQTL, ChIPseq, sQTL

rs42193893 29 48,879,903 MY 0.185 KCNQ1 609,523 aseQTL, ChIPseq, sQTL

rs42193886 29 48,869,098 MY 0.593 KCNQ1 641,566.5 aseQTL, sQTL

rs208731717 29 48,867,561 MY 0.139 KCNQ1 641,566.5 aseQTL, sQTL

rs110195883 14 928,629 FY 0.143 PLEC‑EPPK1 856,270 aseQTL, geQTL, ChIPseq

rs110611375 27 36,605,789 PY 0.268 ENSBTAG00000054394 894,797 sQTL

rs42129584 27 41,405,450 FY 0.046 ENSBTAG00000024530‑THRB 902,737 eeQTL

rs109747060 27 41,403,593 FY 0.055 ENSBTAG00000024530‑THRB 1,144,647.5 sQTL

rs207681942 27 41,404,656 FY 0.055 ENSBTAG00000024530‑THRB 1,144,647.5 sQTL

rs110410005 6 85,445,513 PY 0.071 CSN2, CSN1S1‑CSN2 1,297,266 aseQTL

rs42364319 15 73,957,731 FY 0.143 HSD17B12 1,323,213.5 eeQTL

rs137406385 11 103,249,124 PY 1 ENSBTAG00000048091‑PAEP 1,837,811 sQTL

rs137024369 19 9,212,877 MY 0.5 LPO 1,850,755 young

rs41775103 15 65,312,559 FY 0.076 EHF‑APIP 1,873,240.5 sQTL

rs109627258 6 86,569,048 FY 0.094 SLC4A4 1,906,212 sQTL

rs110579906 6 86,596,089 FY 0.074 SLC4A4 1,906,212 sQTL

rs109352307 6 86,606,598 FY 0.071 SLC4A4 1,906,212 sQTL

rs133025873 6 86,570,867 FY 0.068 SLC4A4 1,906,212 sQTL

rs43474193 6 86,611,800 FY 0.066 SLC4A4 1,906,212 sQTL

rs210484189 5 93,595,233 MY 0.045 MGST1‑SLC15A5 1,985,008.5 eeQTL

rs380876919 15 53,307,805 MY 0.439 MRPL48 2,007,530.5 eeQTL

rs382481916 27 36,603,164 PY 0.308 ENSBTAG00000054394 2,297,071

rs209058841 5 23,538,597 MY 0.147 CRADD 2,422,873.5 ChIPseq

rs109590923 6 87,080,314 MY 0.061 GC‑NPFFR2 2,660,253.5

rs110875064 6 85,438,156 PY 0.083 CSN1S1‑CSN2 2,660,253.5

rs110068670 6 85,438,122 PY 0.082 CSN1S1‑CSN2 2,660,253.5

rs110854433 6 85,439,641 PY 0.073 CSN1S1‑CSN2 2,660,253.5

rs208758483 5 23,540,335 MY 0.175 CRADD 3,380,312.5

rs377917940 5 86,681,779 MY 0.056 SOX5‑ETNK1 3,490,551.5

rs134600906 6 87,020,005 PY 0.056 GC‑NPFFR2 3,490,551.5

rs110879981 6 87,028,643 PY 0.049 GC‑NPFFR2 3,490,551.5

rs42145023 28 34,605,826 FY 0.087 ENSBTAG00000053285‑ZMIZ1 3,645,870



Page 12 of 20Križanac et al. Genetics Selection Evolution            (2025) 57:3 

Moreover, the 1000 Bulls reference panel consisted of a 
large number of Holstein animals (~1200) making them 
the most represented breed in the reference panel (see 
Additional file 1: Table S2), therefore enabling the reliable 
imputation of Holsteins even in the presence of geneti-
cally distant breeds. Another crucial factor to consider 
is the value used for the Ne parameter [91]. Default Ne 
in BEAGLE is 1,000,000, however, this corresponds to 
human populations for which it was initially developed. 
Therefore, updating the Ne parameter to smaller values 
such as we did here is needed, when working with other, 
less-diverse populations [91].

To evaluate the accuracy of imputation we used qual-
ity measure based on estimated genotypes (DR2) since 
SNP array genotyped animals were not whole genome 
sequenced. Stringent variant filtering based on DR2 is 
recommended [91]. Based on visual inspection of the 
variants’ DR2 values we decided to use a threshold of 

DR2 < 0.75. Known causal variants were retained in the 
dataset after DR2 filtering, and were imputed with near 
to perfect quality (DR2 = 0.98 to 1). Causal variants in 
DGAT1 were among the 100 top genome-wide signifi-
cant variants for all three traits analyzed but were not 
the top variants. A possible explanation for this could 
be the presence of additional variation in the form of a 
known variable number of tandem repeats (VNTR) in 
the DGAT1 region [87, 92].

GWAS
Growing number of animals are being routinely geno-
typed for genomic prediction, providing an opportu-
nity for subsequent imputation and GWAS. However, 
the growing sample sizes and marker amounts are not 
fully met by advances in software development, mak-
ing it challenging to perform GWAS on large-scale data. 
Mixed linear model-based methods often suffer from 

Table 4 (continued)

SNP ID Chr Pos Trait PPC Gene ID FAETH ranking FAETH category

rs208261425 5 23,521,846 MY 0.372 CRADD 3,757,434

rs209881936 5 23,520,036 MY 0.155 CRADD 3,757,434

rs210630350 5 23,521,422 MY 0.152 CRADD 3,757,434

rs207809845 6 87,042,033 MY, PY 0.232, 0.172 GC‑NPFFR2 3,941,230

rs135062731 19 26,078,201 PY 0.235 DERL2 3,964,078 ChIPseq

rs385575388 27 41,388,251 FY 0.088 ENSBTAG00000024530‑THRB 4,336,588

rs209866818 28 18,583,595 MY 0.172 ZNF365‑ENSBTAG00000048611 4,593,251.5

rs41651420 28 18,585,274 MY 0.133 ZNF365‑ENSBTAG00000048611 4,593,251.5

rs207579654 28 18,588,395 MY 0.117 ZNF365‑ENSBTAG00000048611 4,593,251.5

rs210783863 28 18,588,283 MY 0.094 ZNF365‑ENSBTAG00000048611 4,593,251.5

rs108948567 11 63,518,954 MY 0.055 RAB1A‑ACTR2 4,838,259

rs109773024 11 63,518,909 MY 0.053 RAB1A‑ACTR2 4,838,259

rs381941220 11 63,518,918 MY 0.053 RAB1A‑ACTR2 4,838,259

rs208818003 28 18,597,601 MY 0.139 ZNF365‑ENSBTAG00000048611 4,838,259

rs41775116 15 65,278,877 FY 0.399 EHF‑APIP 5,584,591.5 young

rs455107942 16 1,786,046 MY 0.064 ENSBTAG00000052913‑SOX13 5,613,365 sQTL

Table 5 Genetic variance explained by top, random and all candidate variants for MY, FY, and PY

nSNP = number of variants incorporated into analysis

VTOP = genetic variance explained by top causal variants (PPC ≥ 0.05)

VRANDOM = genetic variance explained by random variants

SETOP = standard error of top causal variants

SERANDOM = standard error of random variants

VALL = genetic variance explained by all credible sets

SEALL = standard error of all credible sets

Trait nSNP VTOP VRANDOM SETOP SERANDOM nSNP VALL VRANDOM SEALL SERANDOM

MY 178 0.115 0.001 0.018 0.001 4277 0.313 0.012 0.025 0.005

FY 104 0.077 0.000001 0.018 0.001 1035 0.166 0.007 0.024 0.003

PY 68 0.039 0.001 0.010 0.001 1122 0.103 0.004 0.021 0.002
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extensive computational running times that, depending 
on the algorithm used,  are heavily affected by both sam-
ple and marker numbers [20, 93]. Recently, Jiang et  al. 
[20] implemented the fastGWA tool in GCTA, to utilize 
large-scale data with reduced time complexity of approx-
imately O(MN), where M is the number of markers and 
N number of samples [20]. After running for a given time 
limit of 120 h, fastGWA’s MLM analysis did not manage 
to deliver the results on BTA14 on our dataset, probably 
due to a combination of a large number of both samples 
and markers. This process was extremely time and mem-
ory-demanding, occupying the full 1536  GB comput-
ing platform with exclusive access to its compute nodes 
(Table 1). At the moment when the analysis was canceled, 
the estimation of genetic variance had only just started. 
Since fastGWA application has been successful in human 
studies in even higher sample and marker sizes than ours 
[20], we believe that higher relatedness in cattle datasets 
could resulted in longer variance estimation runtime. 
SAIGE, in contrast, does not use a GRM when perform-
ing a single-variant test, it rather uses a variance ratio 
computed in the first step of the analysis, resulting in a 
reduced computation time of O(N) [21]. Consequently, 
we obtained GWAS results after <1  h, on the 384  GB 
computing platform (Table  1). Unfortunately, p-values 
were severely inflated, therefore we took the results with 
great caution. When run with default settings, inflation 
although high (λ = 56.049), was half-size smaller then 
when filtering out the rare variants (λ = 104.226).The 
potential cause of inflation might be the type of pheno-
type measurements that we used, but also the different 
structure of non-human samples, in our case. Previous 
GWAS analyses [94–96] performed using SAIGE were 
carried out for mainly binary traits on human popula-
tions, therefore making direct comparison unfeasible. 
The best approach seems to be GCTA’s MLMA which 
utilizes the whole GRM constructed from the 50K SNP 
chip. MLMA uses O(MN2) for association statistics cal-
culation, resulting in extended runtime [20, 97]. As a 
result, we were not able to run GWAS on all animals at 
once, therefore individual GWAS summary statistics on 
smaller groups were pooled into a meta-analysis. Due to 
the large sample sizes in our study, which might contrib-
ute to the rise in genomic inflation [98], lambda values 
were measured before (see Additional file  1: Table  S3) 
and after performing the meta-analysis. Genomic infla-
tion denotes spurious associations between variants and 
a trait, where the relationship between a phenotype and 
a SNP seems to arise from different factors than the true 
association [99]. These factors include population strati-
fication [100], cryptic relatedness [101], polygenic inher-
itance [99], or strong association between variant and 
phenotype [102]. Although some of the genomic inflation 

in our study might be attributed to the polygenicity of 
milk production traits [103], and population structure 
in German Holstein [104], the main source of genomic 
inflation was the use of meta-analysis software (see Addi-
tional file 2: Figure S1). Similar findings were reported in 
human studies [105], where a large number of individuals 
are often pooled into the meta-analysis. The use of meta-
analysis was inevitable in our case, due to the large sam-
ples that our HPC cluster was not able to utilize. MLMA 
accounted properly for genomic inflation, as the direct 
GWAS summary statistic had lambda values ranging 
from 0.962 to 1.026 (see Additional file 1: Table S3), and 
values up to 1 are usually considered as acceptable for 
genomic inflation. To prove that inflation was not due to 
population structure amplification that might arise when 
pooling the samples into the meta-analysis [106], we 
divided one of the animal groups on which we obtained 
summary statistics. After the animals were divided into 
two groups, GWAS was run for each of them again. Then, 
after obtaining the summary statistics, two groups of 
samples are merged into the meta-analysis. As shown in 
Additional file  2: Figure S1, lambda values for the same 
samples were increased after combining them in a meta-
analysis. Moreover, an increase in the number of ani-
mal groups combined in a meta-analysis led to higher 
genomic inflation.

We evaluated two meta-analysis approaches imple-
mented in METAL, with special focus on genomic infla-
tion values. The z-score approach utilizes the p-value and 
direction of effect to calculate z-scores, while the inverse-
variance approach weights beta coefficients using their 
estimated standard errors and gives weighted effect size 
estimates as an output [23]. The z-score and inverse vari-
ance approach gave identical values of genomic inflation 
(λ = 1.76), no matter the type of effect used and whether 
the sample size weighting was used or not (Table  2). A 
small difference in the number of significant variants was 
observed when comparing the two approaches (Fig.  1). 
It has been shown before that the z-score and inverse 
variance approaches give similar results [107]. Previous 
meta-analyses on cattle performed with METAL used 
predominantly the z-score approach [108–110]. Even 
though inverse-variance gave almost identical results to 
z-scores in our study, the former is considered the proper 
one when combining independent effects [111]. There-
fore, we opted for the z-score approach, given that our 
samples came from the same initial dataset which we split 
solely for the purpose of performing the GWAS. Within 
the two basic approaches, there was no difference when 
using fixed and random effects, indicating the absence of 
heterogeneity between the groups combined [112]. The 
fixed effects model assumes one true effect underlying 
all the studies, i.e., the same effect of variant across all 



Page 14 of 20Križanac et al. Genetics Selection Evolution            (2025) 57:3 

studies, while the random effects model assumes that the 
true effect varies [113, 114]. The fixed effect method was 
therefore the correct approach to proceed with, given 
the similar effect of variants between groups [115]. Even 
though there was no difference with and without sam-
ple-size weighting in our case (Table 2), given the equal 
sample sizes across the groups, sample-size weighting in 
the z-score approach is shown to be the preferable meta-
analysis method [116], especially when allele frequencies 
between groups do not differ [107].

Downstream analyses
Fine-mapping is the usual next step after obtaining sum-
mary statistics from GWAS. The top variants identified 
with GWAS are not always necessarily the true causal 
variants, but rather in LD with causal variants. To infer 
potential causal variants among genome-wide signifi-
cant variants, different fine-mapping methods have 
been developed (reviewed by [117]). BFMAP employs 
the Bayesian approach for fine-mapping and has previ-
ously demonstrated good performance in cattle [118, 
119]. Identification of independent QTL regions through 
conditional analyses such as the GCTA’s COJO [120] or 
PLINK’s clumping [48] is usually done before carrying out 
fine-mapping since it is computationally more efficient 
to perform fine-mapping at one region at a time [117]. 
Due to a large number of independent QTL regions, and 
high memory requirements of the fine-mapping proce-
dure, in our case, it was not possible to fine-map all inde-
pendent regions. Instead, we employed fine-mapping of 
all genome-wide significant variants per chromosome. 
This way we were able to obtain a list of potential causal 
variants, even though we probably missed some due to 
the large number of variants the fine-mapping software 
had to inspect at once. However, BFMAP uses a for-
ward selection approach, which determines independent 
association signals within candidate regions and forms 
credible sets for each independent signal [49], therefore, 
we believe, partially circumventing our inability to fine-
map each independent region separately. After carry-
ing out the fine-mapping, candidate variants and genes 
were retrieved by searching public databases such as 
Animal QTLdb and reviewing journal papers on previ-
ously reported candidate genes and QTLs. We confirmed 
many of the previously reported candidate variants and 
candidate genes for milk production and composition 
(see Additional file 3 and Additional file 4), but also dis-
covered new, previously unreported loci (Table  4). For 
simplification, we discuss only candidate genes associ-
ated with the variants with PPC ≥ 0.05, while the list of 
all associations can be found in Additional file 3: Tables 
S5–S7. The majority of the variants found in all credible 
sets were intronic and intergenic (see Additional file  1: 

Table  S4). Most of the variants were, therefore, non-
coding, which is in line with the majority of other GWAS 
publications [66, 121, 122]. Nayeri et al. [66] showed that 
a large proportion of the most significant variants affect-
ing milk yield and composition traits in Holstein and 
Jersey cattle were located in non-coding regions of the 
genome. Both intron and intergenic variants usually do 
not code for proteins, making their functional prediction 
challenging [123]. However, recent research in human 
studies (reviewed by [121]) and cattle [124] has shown 
that even the variants in non-coding regions may play an 
important part in complex traits and diseases, by indi-
rect involvement in gene expression regulation. Known 
QTNs in livestock are not all coding variants that cause a 
change in amino acid [6, 125], therefore, variants in non-
coding regions can be causal as well [124]. Xiang et  al. 
[24] showed that non-coding variants can contribute 
substantially to variance in complex traits in cattle. After 
the identification of candidate variants through fine-
mapping, experimental validation is required for variants 
to be considered causal. For this purpose, prioritization 
of genome-wide significant variants according to external 
evolutionary and functional information [24] is suggested 
as the next step, followed by sequencing and gene editing 
experiments. In order to prioritize the potential causal 
variants and predict their possible effect on phenotype, 
variants with PPC ≥ 0.05 were functionally annotated 
and assigned FAETH scores. Xiang et  al. [24] estimated 
the variance explained by 13 variant categories across 34 
complex traits in dairy cattle, and calculated the FAETH 
score for more than 17 million sequence variants based 
on their expected contribution to genetic variance, by 
combining the results from all traits and all variant cate-
gories. This way one can rank the variants and infer their 
potential effect on the trait. Variant categories with the 
highest heritability estimates were conserved sites and 
mQTLs, followed by eeQTLs, sQTLs, geQTLs, and ase-
QTLs [24]. In our case, variants with a PPC lower than 
0.1, were categorized as the variants with the highest 
FAETH scores, making the PPC ≥ 0.05 a reasonable cut-
off. The variants with top FAETH scores were some of the 
known, previously described candidate variants for milk 
production and/or composition such as rs41256919 [126] 
and rs135473276 [73] at BTA14 within the MAF1 gene, 
rs110126359 [127] in GPAA1 and rs137070163 [127] 
within CYHR1 on BTA14, and others. Among the vari-
ants with PPC ≥ 0.05, we did further filtering to include 
only variants with high FAETH scores (up to 5.9 mil-
lion ranking). There were 65 new, previously unreported 
SNPs with PPC ≥ 0.05 and high FAETH scores (Table 4). 
Several variants without rsIDs were found among the 
top candidates, however, we do not report these in the 
main text, since it was hard to infer whether they were 



Page 15 of 20Križanac et al. Genetics Selection Evolution            (2025) 57:3  

reported previously or not. For FY, we identified 22 vari-
ants, for MY 32, and 13 for PY. Two variants were in 
common for MY and PY. All of the 65 novel candidate 
causal variants were non-coding, making the conclu-
sion about their biological consequences hard. However, 
they also had high FAETH scores (Table  4), and were 
enriched in many functional (eeQTL, mQTL, sQTL, ase-
QTL, ChIPseq) and evolutionary (conserved) categories. 
Expression QTLs (eQTLs) represent variants associated 
with gene expression levels [128]. aseQTLs quantify dif-
ferences in expression between the two parental alleles at 
heterozygous sites [129], sQTLs affect alternative splicing 
[130, 131] while mQTLs denote variants affecting the lev-
els of metabolites [132]. Membership in these categories 
suggests that variants and the genes found in their prox-
imity have greater potential to be functionally associated 
with traits of interest. Similar relationships have been 
shown previously in cattle [133–136]. The majority of the 
genes have been previously reported for milk produc-
tion traits in cattle (Table  4), so our results do confirm 
previous findings in a huge data set. Given the functional 
and evolutionary evidence found for particular variants 
related to these genes, our results furthermore contrib-
ute to the understanding of how those genes might be 
involved in trait expression.

However, there were also variants found within six novel 
genes (ENSBTAG00000024530, ENSBTAG00000048611, 
ENSBTAG00000051468, ENSBTAG00000052913, ENS-
BTAG00000052917, and ENSBTAG00000053285). Three 
genes (ENSBTAG00000048611, ENSBTAG00000051468, 
and ENSBTAG00000053285) are long non-coding RNA 
(lncRNA) genes, which were present in the Ensembl 
database up to release 110, but have now been removed. 
To find further information about the remaining three 
genes, we subjected the respective transcript sequences 
to an Ensembl’s BLAST/BLAT search against the human 
genome (Table 6).

ENSBTAG00000052913 is a protein coding gene, whose 
overlapping genes in human genome are CACNA2D3 
and the processed pseudogene RPS15P5. CACNA2D3 
(Calcium Voltage-Gated Channel Auxiliary Subunit 
Alpha2delta 3) was previously described as a candi-
date gene for protein yield in Holstein and Ayrshire [72, 
137], yearling temperament in Angus [138], as well as for 

several reproductive and conformation traits including 
teat length and udder depth in Ayrshire cattle [137]. On 
BTA2 ENSBTAG00000052917 overlapped with ASIC4-
AS1 and GMPPA (GDP-Mannose Pyrophosphorylase A), 
a gene that encodes GMPPB which catalyzes the synthe-
sis of the nucleotide sugar GDP-mannose, required for 
glycosylation [139]. Gene expression of GMPPA was pos-
itively correlated with bovine milk fat globule size in the 
study of Huang et al. [140]. Taken altogether, these genes 
present interesting candidates for further research.

Except for the variants with high PPC and FAETH 
scores, it is worth mentioning one variant that was fil-
tered out due to low PPC in previous steps. Stop-gain 
mutation rs209618726 (BTA6: 86,956,200  bp) in the 
GC gene was significant in PY GWAS, with a p-value of 
1.6 ×  10–10. The FAETH annotation was not available for 
this variant, however, given the previously described role 
of GC in milk production [68, 69], rs209618726 might be 
an interesting candidate for validation.

The percentage of trait variance explained by all cred-
ible set variants and top candidate variants or so-called 
SNP-based heritability [141] was calculated to see how 
much of the genetic variance is attributable to variants 
obtained through fine-mapping and to confirm the reli-
ability of our fine-mapping procedure and findings. To 
account for common variants and avoid potential over-
estimation of variance, a GRM set up from 50K SNP 
chip data was included in the model. Both top and all 
credible set variants explained a large proportion of 
variance, especially when compared with random vari-
ants (Table  5), indicating the presence of causal vari-
ants among those and underpinning the infinitesimal 
model. There was a difference in the amount of variance 
explained between the top and all credible sets variants, 
with all credible set variants explaining twice as much 
variance. However, this is expected due to a larger num-
ber of variants present in all credible set categories. Vari-
ants associated with MY explained more variance than 
ones associated with FY and PY (Table 5), probably due 
to a larger number of variants incorporated into the anal-
ysis and higher heritability of MY.

By performing fine-mapping one can obtain the list 
of potential causal variants, and this is usually followed 
by validation experiments, such as sequencing. In large 

Table 6 BLAST/BLAT search results for three genes associated with top causal variants

Chr & Pos Gene ID Gene type Transcript Most similar/
overlapping human 
genes

Alignment score/E-value

27: 41,183,852–41,184,055 ENSBTAG00000024530 Processed pseudogene ENSBTAT00000012998.5 H2BC13 329/3.0 ×  10–90

16: 1,644,724–1,647,223 ENSBTAG00000052913 Protein‑ coding ENSBTAT00000085499.1 CACNA2D3, RPS15P5 68/1.1 ×  10–11

2: 107,434,43–107,435,891 ENSBTAG00000052917 Protein‑ coding ENSBTAT00000072763.1 GMPPA, ASIC4-AS1 274/1.3 ×  10–73
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GWAS such as ours, one cannot perform the sequenc-
ing of all candidate regions, since it is time-demanding 
and costly. Annotation of variants based on external 
sources can be useful here. We report new candidate 
variants, supported by external functional and evolu-
tionary information based on Xiang et al. [24] and vari-
ance analyses.

Conclusions
After performing large-scale GWAS and subsequent 
fine-mapping, we identified new candidate variants. 
Variants explained a comparatively large proportion of 
genetic variance and many ranked high when annotated 
with external functional and evolutionary information. 
In order to be able to fully exploit the power of GWAS, 
sequence data of very large samples are required, 
as shown in our study. Large samples can be both an 
advantage for obtaining new insights about the genetic 
architecture of complex traits, as well as a burden when 
it comes to handling and analyzing it efficiently. Our 
findings add to existing knowledge of milk produc-
tion traits architecture and demonstrate the power of 
our data set and strategy. Future studies incorporating 
health traits and their relationship with milk produc-
tion may leverage the power of this data to add to the 
improvement of animal welfare.
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