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Abstract
Plant diversity affects species richness and abundance of taxa at higher trophic levels.

However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their

trophic and non-trophic interactions are not yet studied because appropriate methods were

lacking. A promising approach is the DNA-based analysis of gut contents using next gener-

ation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the

framework of a biodiversity experiment where plant taxonomic and functional diversity were

manipulated to directly assess environmental interactions involving the omnivorous ground

beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with

universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS

approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and

neutral interactions with P.melanarius. Our findings suggest that the frequency of (i) trophic

interactions increased with plant diversity and vegetation cover; (ii) intraguild predation

increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi

and protists increased with vegetation cover. Experimentally manipulated plant diversity

likely affects multitrophic interactions involving omnivorous consumers. Our study therefore

shows that trophic and non-trophic interactions can be assessed via NGS to address funda-

mental questions in biodiversity research.

Introduction
Biodiversity in terrestrial ecosystems is declining due to intensified land use and other human-
driven environmental changes [1–3]. How such a decline in diversity affects ecosystem func-
tioning is studied most often for plant diversity loss, including both natural systems [4] and
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controlled experiments with manipulated plant communities (e.g. [2]). For decades, plant
diversity experiments have focused on productivity [2,5], while more recent research investi-
gates how the diversity of primary producers affects higher trophic levels [6,7]. These studies
show that plant species richness has cascading, bottom-up effects on abundance and species
richness of higher trophic levels [8–11]. However, the assignment of organisms to trophic
groups (such as herbivores, carnivores, or omnivores) is so far mostly based on literature data
[12], combined with information on morphology and ecology [13]. In addition, it is difficult to
relate organism abundances to process rates such as herbivory or predation, because a species
may not consume food proportional to its abundance [14–16]. A further complication arises if
consumers are omnivores that feed at more than one trophic level. While omnivores are abun-
dant in many systems [17], their responses to plant diversity remain elusive.

A promising approach to directly assess trophic interactions is the DNA-based detection of
food remains in gut contents, which is widely used to study trophic interactions in various eco-
systems [18–22]. Sequence-based identification of food DNA using next generation sequencing
(NGS), combined with universal primers for common barcoding regions, allows simultaneous
detection of feeding events from a wide range of potential interaction partners [23–25]. In addi-
tion to food items, NGS-based methods often co-sequence DNA of other organisms encoun-
tered in the environment [18]. Information on interactions involving these organisms is usually
discarded in dietary studies [26, 27], but may indicate non-trophic interactions, such as com-
mensalism or neutralism that are often completely ignored in ecological networks [28]. This
approach, albeit ideally suited to empirically assess interactions in biodiverse communities, has
not yet been applied to study the effects of plant diversity on trophic and non-trophic processes.

Here, we use the framework of a grassland biodiversity experiment to test the potential of
NGS for the direct and simultaneous assessment of trophic and non-trophic interactions and
analyze how these interactions are affected by plant biodiversity. We use the omnivorous
ground beetle Pterostichus melanarius Illiger (Coleoptera; Carabidae) as a model species, as it
is geographically widespread, locally abundant and present in many natural and agricultural
ecosystems. Pterostichus melanarius primarily feeds on a wide range of invertebrates from vari-
ous trophic levels but its diet also includes plant material [29–31]. Furthermore, P.melanarius
regurgitates its gut content in response to mechanical or thermal stress, allowing non-invasive
and non-lethal collection of gut contents [32]. Another advantage of using regurgitates instead
of whole body DNA extracts of beetles is that they may be ideally suited for sequence-based
identification of ingested organisms using universal primers without the need to include block-
ing primers because only little DNA of the consumer should be present in this sample type
[33]. Blocking primers are the most commonly used approach to overcome the problem that
universal primers, which also amplify consumer DNA, primarily generate amplicons of the
consumer that limit the detection of less abundant and/or highly digested DNA of food
remains [34]. Blocking primers are consumer-specific oligonucleotides that inhibit the amplifi-
cation of specific DNA sequences [35]. In addition to consumer DNA, however, blocking prim-
ers can co-block related non-target species [36] and testing the specificity of blocking primers
is often impractical in field studies with many, also unknown, prey species. An alternative
approach is to compensate for consumer co-amplification by increasing sequencing depth
[36,37]. However, if regurgitates are used, blocking primers might not be necessary because
regurgitates may contain much less consumer DNA. Regurgitates of invertebrates are success-
fully used in combination with prey-specific primers [32,33] but their potential for NGS-based
diet analysis with universal primers is not yettested.

The aim of this study is to assess the potential of NGS-based gut content-analysis to study
multitrophic interactions in response to changes in biodiversity. Within the framework of a
plant diversity experiment, we test if regurgitates of an abundant omnivore can be analysed
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with NGS by applying universal primers without blocking primers. By simultaneously analys-
ing trophic and non-trophic interactions, we exploit the full potential of NGS to assess the
impact of biodiversity on interspecific interactions.

Material and Methods

Ethics statement
Arthropod sampling was conducted with the permission of the city council of Jena, Germany.

Study site
This study was conducted within the framework of a grassland biodiversity experiment (The
Jena Experiment; Thuringia, Germany, 50°950 N, 11°630 E, 130 m above sea level) [38] in exper-
imental plots of the Trait-Based Diversity Experiment (TBE; [39]). The species pool in the TBE
consists of 20 Central European grass and non-legume herbaceous species. Plant communities
were manipulated to cover a gradient of plant species richness (1, 2, 3, 4, and 8) and plant func-
tional diversity (1, 2, 3, and 4) on 138 plots (3.5 m x 3.5 m). The gradient of plant functional
diversity was based on plant traits known to be important for spatial and temporal resource use
such as plant height, rooting depth, or phenology, and represents the levels from low (1) to
high (4) trait complementarity in the plant community [39]. The experimental plots were
maintained by biannual mowing and weeded three times per year to remove unwanted species.
In addition to the experimentally manipulated variables (plant species richness and plant func-
tional diversity), we visually estimated vegetation cover (in percent) in mid-August 2013. For
logistic reasons only a subset of the 138 plots was used for this study. 33 plots were selected at
random: including 10 monocultures, five two-species mixtures, five three-species mixtures, ten
four-species mixtures, and all three eight-species mixtures. Thus, our sampling design had
more replicates at low (1) and high (4,8) plant species richness, which minimizes the standard
error of the slope in subsequent statistical analyses [40]. Plant biomass data from the previous
year was used to show that the 33 plots selected did not introduce a systematic bias compared
to the full 138 plots. Every plot was fenced with an enclosure for a period of two weeks in
August 2013 to prevent inter-plot movement of P.melanarius and other ground-dwelling
organisms. For the enclosures, transparent construction foil (PE, 20 μ, Rajapack, Ettlingen) was
wrapped around the four corner poles of each plot (~50 cm height) and sunk into the soil
using PVC panels (~15 cm depth) (Fig 1A and 1B).

Study organism
Adult P.melanarius were collected in the weeks preceding the experiment using dry pitfall
traps at different locations around Göttingen (Germany; 51°550 N, 9°950 E) in July 2013 as well
as in the surrounding grass margins of the Jena Experiment in August 2013. Beetles were kept
in plastic containers on a substrate of moist clay pebbles in a dark room at 18°C and main-
tained on cat food (K-Classic Adult, Kaufland AG, Germany) but starved 48 h before the
experiment. On August 15, five beetles were released per plot; each beetle was marked with an
individual pattern of coloured dots on its elytra (Fig 1C). After allowing the released beetles to
acclimatise to the plot conditions for four days, we repeatedly recaptured them over a period of
10 days in one central dry pitfall trap (4.5 cm diameter). The traps were filled with clay pebbles
and emptied in the morning and evening to minimize within-trap predation events. If remains
of other organisms were found in a trap, all beetles caught in this trap were excluded from anal-
yses. To sample the beetles’ gut contents, we placed them individually headfirst in 1.5 mL reac-
tion tubes and exposed the tubes for a few seconds to hot water (~60°C) to induce
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regurgitation (Fig 1D). Regurgitates were immediately frozen at -18°C and subsequently stored
at -80°C. Afterwards, the beetles were released on the original plot. We were not able to recap-
ture beetles from all plots because only one trap per plot was used for a comparatively short
recapture period of 10 days, due to other experiments conducted on the same plots. Addition-
ally, some of the beetles failed to regurgitate or the amount of stomach content was too low for
analysis. Several other samples dropped out during the analysis process, so that our final data-
set represented 13 plots.

DNA extraction
Total DNA was extracted from regurgitates in a molecular diagnostic laboratory at the Institute
of Ecology, University of Innsbruck, Austria. Each regurgitate sample was mixed with 200 μL
lysis buffer containing 5 μL Proteinase K (10 mg/mL, AppliChem, Darmstadt, Germany) and
TES-buffer (0.1 M TRIS, 10 mM EDTA, 2% SDS, pH 8) and was incubated at 56°C for 3 h. The
DNA was extracted from the lysate on a BioSprint 96 robotic DNA extraction platform using
the MagAttract DNA Blood M96 Kit (Qiagen, Hilden, Germany). Four negative extraction
controls (DNA extraction blanks) were included to monitor for carry-over DNA contamina-
tion during the extraction process and were subsequently tested in PCR reactions for NGS.

Next generation sequencing and sequence processing
Next generation sequencing of regurgitates was conducted at the Department of Genomic and
Applied Microbiology (University of Goettingen, Germany). To analyse a broad spectrum of

Fig 1. Setup of field experiment and regurgitate sampling. (A) Overview of plots of the Trait-Based Experiment with enclosures. (B) Enclosures were
made of construction foil sunk into the soil using PVC panels. (C) Marked beetles were released and recaptured to sample regurgitates (D) sampling
regurgitates. Photographs by J. Tiede.

doi:10.1371/journal.pone.0148781.g001
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ingested organisms from the regurgitates of P.melanarius without a priori decisions on focal
groups, we used universal primers amplifying a ~600 bp region of the eukaryotic 18S rDNA
gene: F515 (5’GTGCCAGCMGCCGCGGTAA-3’) and R1119 (5’-GGTGCCCTTCCGTCA-3’)
[41]. Taxon coverage of the primer pair was previously tested in silico using Primer Prospector
[42] and reference sequences derived from the SILVA database [43]. The primers included a
Roche 454 pyrosequencing adaptor, a library key sequence, and a multiplex identifier (MID).
Each 50 μL PCR reaction contained 10 μL of 5x Phusion GC buffer (Finnzymes, Vantaa, Fin-
land), 0.2mM of each dNTP, 4 μM of each primer, 1.5 μL dimethyl sulfoxide (DMSO), 1 U
Phusion Hot Start DNA polymerase (Finnzymes), 1 μL template DNA, and 32 μL diethylpyro-
carbonate (DEPC) water. The thermocycling protocol was 98°C for 30 s, 35 cycles of 98°C for
10 s, 60°C for 20 s, 72°C for 20 s, and 72°C for 5 min once. One template-free control was
included in every PCR run. Samples that showed PCR products on agarose gel were amplified
in three technical replicates, purified with the peqGOLD Gel Extraction Kit (Peqlab, Erlangen,
Germany) and pooled at equal DNA concentrations. DNA concentration was quantified using
a Qubit fluorometer (Invitrogen, Carlsbad, USA) with the Quant-iT dsDNA HS assay kit; 20
regurgitates with a sufficient DNA concentration (� 2 ng μl-1) were sequenced.

The sequencing was carried out on a GS-FLX+ 454 pyrosequencer using Titanium chemis-
try (Roche, Branford, CT), with a targeted surveying effort of 5,000 reads per sample. Short
reads (<200 bp), and low quality reads (homopolymer stretches>8 bp; primer mismatches>5
bp) were removed using QIIME v1.6 [44]. The sequences were denoised using Acacia v1.52
[45] and cutadapt was used to truncate remaining primer sequences [46]. Chimeric sequences
were removed using UCHIME [47] in reference mode with SILVA (SSURef 119 NR database
as reference data set [43]). Using the UCLUST algorithm [48], the remaining sequences were
clustered in operational taxonomic units (OTUs) at 99% genetic similarity. The consensus
sequences were calculated using USEARCH (v. 7.0.1090). OTUs were subsequently classified
by blast alignment against the SILVA database [49]. The taxonomy of the best hit was assigned
to the respective OTU. DNA sequences were deposited in the Sequence Read Archive (SRA) of
the National Center for Biotechnology Information under accession SRA282133.

Data processing
Two samples were excluded because of low numbers of total sequences or high numbers of
consumer (P.melanarius) sequences. For the analysis of taxa composition in the remaining 18
regurgitate samples, we removed all OTUs classified as consumer (1 OTU, 1 sample), human
(1 OTU, 7 samples), vertebrate (1OTU, 1 sample), tree species (5 OTU, 1–5 samples) and
aquatic species (6 OTU, 1–2 samples). DNA of aquatic species might have originated from a
flooding event in June 2013 [50], and tree DNA likely originated from pollen of trees growing
nearby in northern and eastern direction. Human and vertebrate DNA (squirrel) likely repre-
sented contaminations. In addition, we excluded OTUs that could not be classified to order-
level (4 OTUs, 1–4 samples), singletons and doubletons (46 OTU, 1–4 samples) from the anal-
ysis. A complete list of removed OTUs is provided in S1 Table.

For the analysis of interaction types, all remaining OTUs were aggregated at genus level and
grouped based on literature information on their most likely interaction with P.melanarius
(Table 1). We differentiated between trophic interactions that are beneficial (+) to P.melanar-
ius but negative (-) for the interaction partner, and non-trophic interactions that are neutral
(0) or negative for the beetle and beneficial or neutral for the interaction partner.

Trophic interactions (+/-):

• Total feeding interactions: all organisms that were likely actively consumed by P.melanarius
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• Plant derived food: higher plant taxa

• Prey: all animal taxa except phoretic mites

• Intraguild predation: prey with predatory or omnivorous nutrition

Non-trophic interactions:

• Parasitism (-/+): organisms that presumably parasitize P.melanarius

• Phoresy (0/+): mites that use insects as phoretic carriers and whose DNA could either orig-
inate from mites or mite remains that have fallen off during sampling

• Neutralism (0/0): organisms without known interaction with P.melanarius that were likely
passively consumed together with food

For the analysis of plant diversity effects on taxa detection in regurgitates, the number of
OTUs in each group was calculated for each sample (S1 R-Script, S1 and S2 Data). Four plots
were represented by two or three samples. For these, the number of taxa and the number of
sequences per group were averaged and rounded to the smallest following integer (ceiling func-
tion). The resulting 13 independent data points represented 13 plots, including three monocul-
tures, two two-species mixtures, three three-species mixtures, three four-species mixtures, and
two eight-species mixtures.

Statistical analysis
Data were analysed using R (version 3.1.2, R Development Core Team, 2014). We used gener-
alized linear models (GLM) with negative binomial or quasipoisson errors to analyse the effects
of the explanatory variables on the richness of OTUs for each group. Models included either
plant species richness, functional diversity, or vegetation cover as explanatory variables, as
these variables were colinear when entered together in single models; this resulted in a total of
three individual models per OTU group. To account for potential effects of the number of
sequences per OTU, we additionally ran quasipoisson models with number of sequences per
OTU as known prior weights, giving more weight to samples with a high number of sequences.
Note that the number of sequences cannot be used as a measure of consumed biomass as it is
affected by the time since consumption and characteristics of the prey tissue that affect diges-
tion time [24,36,51,52].

Results
With NGS, we found a total of 90 OTUs in regurgitates of P.melanarius, covering a range of
five kingdoms within the Eukaryotes [53]: Animalia, Chromista, Fungi, Plantae, and Protozoa.
77 OTUs were assigned to family level, covering 73 different families, and 67 to genus level,
covering 63 different genera (Table 1).

Detection of trophic and non-trophic interactions with NGS
Of these 90 OTUs, 24 were categorized as feeding interactions, comprising 12 plant and 12 ani-
mal taxa. Four of the identified plant taxa were locally present as part of the Trait-Based Exper-
iment: the genera Plantago (Lamiales), Ranunculus (Ranunculales), and Rumex
(Caryophyllales), and the family Poaceae (Poales). Other plant taxa, such as the stinging nettle
Urtica (Rosales), were locally present in the vegetation matrix surrounding the plots and were
occasional weeds in the experimental plots.
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Animal prey detected using NGS included herbivores and detritivores, such as gastropods
(Stylommatophora: Deroceras, and Xerolenta), mites (Trombidiformes: Microtrombidium;
Sarcoptiformes: Glcyyphagidae, and Orbitulata), grasshoppers (Orthoptera: Gomphocerus),
and earthworms (Haplotaxida: Hormogastridae). In addition, we detected other predator taxa:
DNA of another ground beetle (Coleoptera: Bembidion) was found in four plots, a predatory
mite (Trombidiformes: Trombiculidae) in three plots, an earwig (Dermaptera: Forficulidae),
and two spider taxa (jumping spiders; Araneae: Salticidae, and a huntsman spider; Sparassidae,
likelyMicrommata virescens).

In addition to feeding interactions, we detected organisms that likely interacted negatively
(parasites) or neutrally (commensalism, neutralism) with P.melanarius (Table 1). Two organ-
isms that were presumably parasites of P.melanarius were present in samples from five plots:
an entomopathogenic fungus (Ascomycota: Hypocreales: Isaria sp.) known to infect carabid
beetles [54], and a group of parasitic protists (Apicomplexa: Eugregarinida) that frequently
infects P.melanarius [55]. DNA of phoretic mites was found in regurgitates from 11 plots, with
the family Histiostomatidae (Acariformes) represented eight times and the family Acaridae,
genusHistiogaster sp. (Acariformes), found three times. None of the plots contained both fami-
lies together. Most OTUs (N = 61) detected in the regurgitates of P.melanarius represented
neutral interaction partners with no specific relation to the beetle (passive consumption, envi-
ronmental DNA). Most of these organisms were fungi (N = 45), and protists (Amoebozoa and
SAR, N = 13), but we also detected terrestrial algae (N = 3).

Effects of plant biodiversity and vegetation cover on species interactions
Plant diversity affected the total number of feeding interactions and the taxon richness in all
food groups including plant-derived food, animal total prey and intraguild prey (Table 1; Fig
2A–2D): the total number of feeding interactions was significantly positively affected by plant
species richness and positively but not significantly by functional diversity and vegetation
cover. The number of plant taxa detected in the regurgitates increased with the number of
sown plant species in the plot. The total number of total prey species increased with plant spe-
cies richness and vegetation cover, intraguild predation was only affected by vegetation cover.
The occurrence of parasitic and phoretic interactions was not significantly related to any of the
explanatory variables (Table 2). The richness of neutral interactions was not affected by plant
species richness or functional diversity, but increased with percentage vegetation cover
(Table 2; Fig 2E). In weighted models, all effects from unweighted models remained significant.
Additionally, marginal effects became significant.

Since the identity of OTUs was ignored in the aggregated data analysis, we show in Fig 3
how abundant individual families from the three kingdoms Animalia, Plantae, and Fungi
respond to plant species richness and plant functional diversity.

Discussion

Assessment and interpretation of trophic and non-trophic interactions
NGS of regurgitates of the omnivore P.melanariuswith primers targeting a spectrum of organ-
isms as broad as eukaryotes allowed us to directly assess trophic and non-trophic interactions
involving a wide range of taxa. Any sequencing-based list of interactions will require further vali-
dation, as the quality of reference libraries or databases may affect assignment of sequences to
taxa. As our study was performed within the framework of a larger biodiversity experiment, we
had considerable knowledge on the presence of taxa in the study area, providing extensive species
inventories that we used to validate the results. Additionally, for well-studied species such as P.
melanarius, feeding interactions identified by NGS were compared to a broad body of literature
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Fig 2. Effects of plant species richness, plant functional diversity, and percentage vegetation cover on feeding interactions and neutral
interactions detected in regurgitates of P.melanarius. Points represent individual plots and are scaled based on the logarithm of the number of
sequences, blue lines show GLM predictions, blue polygons show 95% confidence intervals for effects with p<0.05, red lines and red polygons refer to GLMs
weighted by the number of sequences. A) Total number of feeding interactions including prey and plant taxa, B) feeding interactions involving plant taxa, C)
feeding interactions involving total prey taxa, D) feeding interactions involving intraguild predation, and E) neutral interactions.

doi:10.1371/journal.pone.0148781.g002
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Table 2. Summary of generalized linear model results on the effect of plant species richness, plant
functional diversity and percent vegetation cover on the number of OTUs detected in each interaction
group.

Interaction group Parameter Estimate SE Z-value P-value

1a) Total feeding interactions (Intercept) 0.275 0.250 1.10 0.295

Plant species richness 0.195 0.048 4.114 0.002

(Intercept) 0.254 0.457 0.555 0.590

Plant functional diversity 0.289 0.145 1.996 0.071

(Intercept) -1.206 1.298 -0.929 0.373

Vegetation cover [%] 0.028 0.016 1.797 0.100

1b) Feeding on plant taxa (Intercept) 0.209 0.296 0.708 0.494

Plant species richness 0.138 0.060 2.295 0.042

(Intercept) 0.435 0.460 0.946 0.365

Plant functional diversity 0.113 0.155 0.727 0.483

(Intercept) -0.102 1.201 -0.085 0.934

Vegetation cover [%] 0.011 0.015 0.711 0.492

1c) Feeding on prey taxa (Intercept) -1.087 0.663 -1.639 0.129

Plant species richness 0.245 0.119 2.067 0.063

(Intercept) -1.681 1.041 -1.616 0.134

Plant functional diversity 0.549 0.306 1.796 0.100

(Intercept) -5.989 3.045 -1.967 0.075

Vegetation cover [%] 0.071 0.035 2.040 0.066

1d) Intraguild predation (Intercept) -1.379 0.681 -2.023 0.068

Plant species richness 0.222 0.125 1.769 0.105

(Intercept) -2.087 1.076 -1.939 0.079

Plant functional diversity 0.549 0.316 1.736 0.110

(Intercept) -6.728 2.899 -2.320 0.041

Vegetation cover [%] 0.075 0.033 2.266 0.045

1e) Parasitism (Intercept) -1.099 0.699 -1.571 0.144

Plant species richness 0.041 0.163 0.252 0.806

(Intercept) -1.063 0.902 -1.178 0.264

Plant functional diversity 0.042 0.315 0.133 0.897

(Intercept) -2.562 2.607 -0.983 0.347

Vegetation cover [%] 0.020 0.032 0.636 0.538

1f) Phoretic interaction (Intercept) -0.153 0.233 -0.656 0.525

Plant species richness -0.004 0.058 -0.073 0.943

(Intercept) 0.122 0.282 0.434 0.672

Plant functional diversity -0.118 0.106 -1.114 0.289

(Intercept) 0.171 0.682 0.250 0.807

Vegetation cover [%] -0.004 0.009 -0.501 0.626

1g) Neutral interaction (Intercept) 2.013 0.270 7.456 <0.001

Plant species richness 0.059 0.065 0.911 0.362

(Intercept) 2.008 0.355 5.650 <0.001

Plant functional diversity 0.082 0.125 0.662 0.508

(Intercept) 0.345 0.820 0.421 0.674

Vegetation cover [%] 0.023 0.010 2.325 0.020

2a) Total feeding interactions (weighted) (Intercept) 0.296 0.251 1.179 0.263

Plant species richness 0.198 0.039 5.021 0.000

(Intercept) -0.080 0.555 -0.145 0.888

(Continued)
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Table 2. (Continued)

Interaction group Parameter Estimate SE Z-value P-value

Plant functional diversity 0.440 0.160 2.745 0.019

(Intercept) -1.084 1.680 -0.645 0.532

Vegetation cover [%] 0.028 0.019 1.458 0.173

2b) Feeding on plant taxa (weighted) (Intercept) 0.166 0.254 0.653 0.527

Plant species richness 0.176 0.043 4.134 0.002

(Intercept) 0.015 0.552 0.028 0.978

Plant functional diversity 0.330 0.168 1.969 0.075

(Intercept) 0.227 1.875 0.121 0.906

Vegetation cover [%] 0.009 0.022 0.424 0.679

2c) Feeding on prey taxa (weighted) (Intercept) 0.242 0.200 1.212 0.251

Plant species richness 0.104 0.031 3.348 0.007

(Intercept) -0.112 0.362 -0.311 0.762

Plant functional diversity 0.276 0.101 2.731 0.020

(Intercept) -1.250 0.798 -1.566 0.146

Vegetation cover [%] 0.023 0.009 2.642 0.023

2d) Intraguild predation (weighted) (Intercept) -0.076 0.270 -0.280 0.785

Plant species richness 0.096 0.038 2.529 0.028

(Intercept) -1.300 0.558 -2.330 0.040

Plant functional diversity 0.489 0.143 3.416 0.006

(Intercept) -3.218 1.407 -2.287 0.043

Vegetation cover [%] 0.041 0.015 2.706 0.020

2e) Parasitism (weighted) (Intercept) -0.006 0.169 -0.034 0.973

Plant species richness -0.007 0.053 -0.123 0.905

(Intercept) -0.191 0.335 -0.570 0.580

Plant functional diversity 0.057 0.114 0.500 0.627

(Intercept) -0.126 0.686 -0.183 0.858

Vegetation cover [%] 0.001 0.009 0.146 0.886

2f) Phoretic interactions (weighted) (Intercept) 0.001 0.033 0.026 0.980

Plant species richness -0.002 0.012 -0.142 0.890

(Intercept) 0.011 0.040 0.274 0.789

Plant functional diversity -0.008 0.021 -0.391 0.703

(Intercept) 0.027 0.139 0.198 0.847

Vegetation cover [%] 0.000 0.002 -0.223 0.828

2g) Neutral interactions (weighted) (Intercept) 2.466 0.040 61.912 <2e-16

Plant species richness 0.011 0.009 1.178 0.239

(Intercept) 2.478 0.055 45.236 <2e-16

Plant functional diversity 0.010 0.019 0.523 0.601

(Intercept) 0.753 0.128 5.888 0.000

Vegetation cover [%] 0.021 0.001 14.068 <2e-16

All OTUs were assigned to interaction groups (see methods). We tested the effects of three explanatory

variables on all interaction groups and compared two types of models. Models 1a-g were based on counts

of interactions per plot, while models 2a-g additionally included a weights argument for the number of

sequences. All models used 2 degrees of freedom and had 11 residual degrees of freedom. A

quasipoisson distribution was used for all models except neutral interactions, for which negative binomial

models were fitted. SE = standard error. P-values <0.05 are reported in bold numbers.

doi:10.1371/journal.pone.0148781.t002
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on dietary range, feeding preferences, and behaviour. Literature research may also help to reveal
which live stage of an animal or type of plant tissue has likely been consumed, as this information
cannot be provided by DNA-based food detection. For example seeds are a putative source of
plant DNA since they are frequently consumed by P.melanarius [56] and more often found in
guts of the carabid subfamily Harpalinae than pollen or other plant tissue [30].

Many taxa we detected are well-known prey of P.melanarius, including slugs [57,58], earth-
worms [59], spiders [15], and small beetles [15,60]. More surprising was the detection of grass-
hopper DNA. Grasshoppers were abundant at the field site during our study (see also [61]),
and although it is unlikely that the beetle captured an adult grasshopper, predation on egg pods
[62] or scavenging on dead specimen can be considered a likely source of DNA in the gut [63].
Most surprising was the frequent detection of mite DNA, an observation that was supported by
mite remains in dissected guts of P.melanarius specimens collected from the Jena-Experiment
(Fig 4A and 4B). Mites are within the food range of ground beetles [29] but their role in the
diet of P.melanarius remains unclear. Generally, the broad dietary range of P.melanarius
reported in the literature [29,30] is well reflected by our NGS-based results on trophic
interactions.

Among the non-trophic interactions revealed in the current study, parasitic interactions
included an entomopathogenic fungus and a group of parasitic protists. Both could either have

Fig 3. Effects of plant species richness and plant functional diversity on detection frequency of abundant OTUs detected in regurgitates of P.
melanarius. The six panels show the three kingdoms (Plantae, Animalia, and Fungi). Points represent OTUs, aggregated at family level, that were detected
in at least two levels of plant species richness. Lines (smoother span = 1.6) show least-squares fits for illustrative purposes only.

doi:10.1371/journal.pone.0148781.g003
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been parasites of P.melanarius or associated with its prey [37]. Despite this uncertainty, detect-
ing parasite DNA in regurgitates of P.melanarius proves that the beetles were likely exposed to
potential antagonists. Mite DNA detected using NGS mayalso indicate phoretic interactions,
that is, mites may have used beetles as transporters between habitats [64]. Mite DNA could
either originate from mites or their remains, like exuviae, that were externally attached to prey
or to P.melanarius itself and have fallen off during sampling. Additional observations showed
that P.melanarius specimens are frequently infested by mites (Fig 4C).

Most taxa we detected could not be assigned to a specific type of interaction with P.mela-
narius and were assumed to be neutral interactions with organisms that coexist with the beetles
without affecting them in a particular way. By this simplification, we may have included organ-
isms with a more specific but up to date unknown interaction with P.melanarius, e.g. yeasts
that are beneficial to digestion processes, since the microbiome of ground beetles is largely
unexplored [65,66]. Most of the organisms classified as neutral interaction partners could,
however, be identified as phytopathogens or saprotrophs for which an effect on P.melanarius
is unlikely. Vice versa, the beetle could have contributed to the dispersal of spores [67] but
information on the taxon-specific survival through the gut passage is required for assumptions
on more specific interactions. It is likely that carabid beetles accidentally ingest all kinds of
organisms during feeding or simply by dwelling in their environment, because even non-nutri-
tional material, such as sand, has commonly been reported in their gut contents [30]. Boyer
et al. [68] suggest the use of faeces as ‘biodiversity capsules’ for species inventories of the forag-
ing area. Similarly, species composition in regurgitates may provide information on species
diversity and ecosystem processes in the beetles‘ habitat.

Fig 4. Mites as prey and parasites of P.melanarius. (A) Predatory mite (Trombidiformes: Trombiculidae) in a plot of the Jena-Experiment. (B) Mite isolated
from a gut of P.melanarius (C). Phoretic mites (Mesostigmata: Parasitidae) on P.melanarius. Photographs by C. Scherber.

doi:10.1371/journal.pone.0148781.g004
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Further studies are essential to supplement the list of interaction partners by expanding the
analysis to bacteria. Facultative bacterial symbionts have an impact on seed consumption by
the omnivorous ground beetle Harpalus rufipes [65] and may also alter the food choice of field
populations of ground beetles.

Regurgitates as source material for NGS
Our study is among the first to use NGS for the analysis of regurgitates to assess species interac-
tions. Even without the use of blocking primers, only two samples yielded consumer DNA
sequences and in one of them there was too much consumer DNA so that the sample had to be
removed from the analysis. These results demonstrate that regurgitates contain only little con-
sumer tissue and are asuitable source material for diet analysis of omnivorous or predatory
insects because they can be analysed without blocking primers, avoiding drawbacks related to
this approach [36,37]. In addition, the DNA recovered from food remains regurgitated from
the foregut is likely more intact than from posterior gut sections or faeces. This allowed us to
use primers that target a relative large DNA fragment of about 600 bp, which is beyond the rec-
ommended size of DNA fragments for molecular gut content analysis (but see [69]), and to
assign most sequences to genus or family level. Targeting long DNA sequences may also reduce
the chance to detect degraded DNA from prey guts (secondary predation; [70]), or environ-
mental sources. In the present study, we further avoided an overestimation of feeding events by
discarding OTUs with low reads.

Defensive regurgitation is not only common in Carabidae [33,71] but also in other coleop-
teran families commonly occurring in a wide range of ecosystems, for example, Chrysomelidae
[72,73], Staphylinidae (personal observation) and Silphidae [74], but also in Orthoptera [75] as
well as the larval stages of some Lepidoptera [76]. As regurgitate-sampling is non-invasive it
could even be used to analyse the diet of endangered species or gut content samples of an indi-
vidual at multiple time points. Using regurgitates for NGS based analysis represents a straight-
forward method to assess trophic and non-trophic interactions. Over all, our results
demonstrate that regurgitates are a suitable source material for diet analysis of omnivorous or
predatory insects with NGS.

Effects of plant biodiversity and vegetation cover on species interactions
We conducted our study within the framework of a biodiversity experiment, where aspects of
plant taxonomic and functional diversity are experimentally manipulated [39] to allow testing
for the effects of plant diversity per se on trophic and non-trophic interactions, as opposed to
observational studies [77,78]. So far, research on plant diversity effects on higher trophic levels
rarely goes beyond measuring species richness and abundance. Although our findings are lim-
ited by the small sample size, our study provides insights into how plant diversity affects how
well species in a community are connected with each other.

Our results indicate that experimentally manipulated plant diversity may indeed affect
interactions between a generalist consumer and its potential food. Both the number of plant
and prey taxa detected in regurgitates increased with the number of sown plant species. Plots
with high plant species richness support a more diverse consumer community in relation to
species poor plots [8] and may provide more potential food items for the omnivorous beetles,
thereby facilitating a mixed diet.

Prey detection and intraguild predation also increased with vegetation cover. Large carabid
beetles, as P.melanarius (body size 12–18 mm), prefer structural complexity over open plots
because it lowers their vulnerability to predation [79] and may facilitates extensive foraging.
The abundance of predators relative to herbivores has been reported to increase with plant
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diversity [10], potentially increasing the chances that P.melanarius captures other predators.
Hunter [80] suggests that omnivorous consumers preferentially feed on other higher order
consumers because they are rich in nitrogen.

In regurgitates of beetles from plots with dense vegetation, we detected more neutral inter-
actions with passively consumed organisms. High vegetation cover may provide a more humid
microclimate that facilitates fungi and protists [81,82] and therefore increases the likelihood of
encounters with ground-dwelling beetles.

It should be made clear, however, that more replicates and a greater range of consumer taxa
will be needed to further elucidate the trends reported here. Nevertheless, our findings agree
well with a large body of empirical work [6,8,83] showing a facilitating effect of plant diversity
on trophic interactions. Thus, our study presents the intriguing possibility that our under-
standing of multitrophic food webs can be considerably advanced using molecular tools such
as NGS.

NGS-based gut content analysis was so far mainly used to describe the dietary spectrum of
species [27,37,84] but is underexploited in research on biodiversity and ecosystem functioning
and has rarely been applied in plant diversity experiments. Expanding the spectrum of applica-
tions of NGS to address questions and to empirically test theories in biodiversity research is the
way forward. With profound knowledge of the species pool and the often extensive data on eco-
logical parameters available in biodiversity experiments, NGS-based gut content analysis can con-
tribute to a mechanistic understanding of diversity effects. Applying very general primers allows
assessing trophic interactions on various food types and non-trophic interactions simultaneously
in one approach. By using regurgitates as source material, blocking primers for consumer DNA
are no longer required and NGS becomes easily applicable even for predators or omnivores.
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