February 2023. Adieu, salut, good bye, auf Wiedersehen. Quel dommage, ach wie schade. Alles Gute für Dich.

Typisch deutscher Spruch: "Wer nicht wagt, der nicht gewinnt". Typical German saying: "Nothing ventured, nothing gained".

More than four years of Tim Beissinger's ,Lehre und Forschung' brought novel knowledge and approaches to Göttingen, and novel checks of old attitudes. Danke!

All of us experienced how lively, cheerfull, optimistic, successful breeding science and research can be.

I never left your office, Tim, as grumpy and hesitant as I entered it; always I left it inspired and in improved mood ③.

Tschüss Good bye

What will be the most important topic in plant breeding in 20 years [question mark] Tim asked us at Feb 1 2023 at Wed9AM

Backcrossing Recurrent Selection GWAS GP New Gools Mixed Stands z editing* Motagonesis* Gene editing* Mappingt somental Modeling Thenomics Controlled ments

I should as well invite for brain storming, more rely on community and crowd than ...

... to think up
things by myself
in a quiet corner
of my study room
;-)

Parameters describing local and wide adaptation breeding. GL interactions (such as interactions of genotypes with soil type, terrain slope, access to ground water, position of crop in rotation, ...) are potentially exploitable by breeding locally adapted cultivars.

	Breedin	cf. Atlin, Kleinknecht, Singh - and Piepho, 2011. Managing		
	Local adaptation	Wide adaptation	genotype x environment interactions in plant breeding programs. A selection theory	
Mean (t/ha)	μ	μ	approach. JISAS 65, 237-247. https://repository.cimmyt.org	
Variance (t ² /ha ²)	$\sigma_{G}^{2} + \sigma_{GL}^{2}$	σ_{G}^{2}	/handle/10883/3150	
Heritability h ²	$\frac{\sigma_{G}^{2} + \sigma_{GL}^{2}}{\sigma_{G}^{2} + \sigma_{GL}^{2} + \frac{\sigma_{GYL}^{2}}{\gamma} + \frac{\sigma_{GYL}^{2}}{\gamma}}$	$\frac{\sigma_{G}^{2}}{\sigma_{G}^{2} + \frac{\sigma_{GL}^{2}}{L} + \frac{\sigma_{GY}^{2}}{Y} + \frac{\sigma_{GYL}^{2}}{LY}}$		

From PhD thesis von Lamiae Ghaouti, 2007

3

Breeding for ... Local adaptation Wide adaptation μ μ Mean (t/ha) σ^2_{G} $\sigma_{G}^{2} + \sigma_{G}^{2}$ Variance (t²/ha²) $\frac{\sigma_{G}^{2} + \sigma_{GL}^{2}}{\sigma_{G}^{2} + \sigma_{GL}^{2} + \frac{\sigma_{GYL}^{2}}{\sigma_{G}^{2} + \frac{\sigma_{GYL}^{2}}{\sigma_{G}^{2} + \frac{\sigma_{e}^{2}}{\sigma_{G}^{2} + \frac{\sigma_{GYL}^{2}}{\sigma_{G}^{2} + \frac{\sigma_{GYL}^{2}}{\sigma_{G}^{2}$ Heritability h²

For each farm *et cetera* a ,private', ,specific' best-cultivar may be bred if breeding was much more easy-efficient-fast-cheap.

Improvements in Genomic Prediction (incl. GE) plus Single-Plant-based Selection may make this become true! Faba bean trials.

Heritability (broad sense) was higher if breeding was local and production was local

than if breeding was supraregional but production is local

Growing the locally best cultivar at each location is of course better than growing one, on-averagebest-cultivar at each location. How big is the drawback coming from: "Hey guy, the breeding company is not breeding just four your farm but instead you have to use seed of cultivars that perform best <u>on average</u>, across a large agro-ecological area".

From PhD thesis von Lamiae Ghaouti, 2007

'Correlated g	ain from sele	ction' CR		Atlin, Kleinknecht, Singh and		
VS.				Piepho, 2011. Managing genotype		
'Direct gain from selection', R;			id est: CR/R	x environment interactions in plant		
,Locale' heritability	,Trans- local heritability	Genetic Correlation between local and trans-local	Gains from selection, ,correlated' <i>vs.</i> ,direct'	breeding programs. A selection theory approach. JISAS 65, 237- 247. https://repository.cimmyt.org/handle /10883/3150		
h2 0.000	h2 0 765	r 0770				

 $h^2 = 0.803$ $h^2 = 0.765$ $r_G = 0.773$ CR/R = 0.755

Atlin, Kleinknecht, Singh and Piepho, 2011. Managing genotype x environment interactions in plant breeding programs. A selection theory approach. JISAS 65, 237-247. https://repository.cimmyt.org/handle/10883/3150

Most of GxE variance is unpredictable and connected to seasonal events and little is fied and predictable and attached to the choice of locations and the like

Crop	Region	Variance componens				Ratios of Var.cps.	
		σ_{G}^{2}	σ^2_{GL}	σ^2_{GY}	σ^2_{GLY}	$\sigma^2_{GL} / \sigma^2_{G}$	$(\sigma^2_{GY} + \sigma^2_{GLY})/\sigma^2_{G}$
Maize	South Africa	0,17	0,00	0,03	0,51	0,00	3,18
Rainfed rice	Thailand	0,07	0,04	0,06	0,32	0,57	5,43
Barley	East Canada	0,17	0,08	0,05	0,17	0,47	1,29
Spring wheat	East Canada	0,48	0,01	0,00	0,27	0,02	0,56
Winter wheat	East Canada	0,36	0,03	0,02	0,29	0,08	0,86
Spring wheat	East Canada	0,29	0,11	0,02	0,27	0,38	1,00
Barley	UK	0,10	0,06	0,12	0,27	0,60	3,90
Spring wheat	UK	0,13	0,12	0,14	0,28	0,92	3,23
Winter wheat	UK	0,27	0,02	0,06	0,31	0,07	1,37
Winter wheat	UK	0,18	0,07	0,04	0,29	0,39	1,83
Spring wheat	Italy	0,05	0,13	0,11	0,12	2,60	4,60
Average	Australia	0,21	0,06	0,06	0,28	0,56	2,48

	Breeding for			
	Local and Now	Wide adaptation		
Mean (t/ha)	μ	μ		
Variance (t²/ha²)	$\sigma^2_G + \sigma^2_{GL} + \sigma^2_{GYL}$	σ_{G}^{2}		
Heritability h²	$\frac{\sigma_{G}^{2} + \sigma_{GL}^{2} + \sigma_{GY}^{2} + \sigma_{GYL}^{2}}{\sigma_{G}^{2} + \sigma_{GL}^{2} + \frac{\sigma_{GYL}^{2}}{1} + \frac{\sigma_{GYL}^{2}}{1}}$	$\frac{\sigma_{G}^{2}}{\sigma_{G}^{2} + \frac{\sigma_{GL}^{2}}{L} + \frac{\sigma_{GY}^{2}}{Y} + \frac{\sigma_{GYL}^{2}}{LY}}$		

From the point of view of a single farmer, production is always ,local' and ,now'.

Growing the cultivar best adapted to the <u>current</u> weather would as well be better than growing the one which is best-adapted to the average weather (or most stable across weathers).

Still, weather forecasts are a source of frustration and disappointment.

Still, weather forecasts are a source of frustration and disappointment. Nevertheless, look here ?!

What if.

What if the weather forecasts were reliable for 3-5 months?

Then the farmer, as maize plants in June are still young, gets the forecast and learns that one should rather have sown sorghum instead of maize.

What about sowing both, sorghum <u>and</u> maize (mixture). Then, in June, you 'switch' the maize plants off (tell them to vanish) and the field becomes a pure sorghum field (or *vice versa*; same with mixing two different cultivars instead of two species).

<u>What if.</u>

What if the weather forecasts were reliable for 3-5 months?

Then the farmer, as maize plants in June are still young, gets the forecast and learns that one should rather have sown sorghum instead of maize.

What about sowing both, sorghum <u>and</u> maize (mixture). Then, in June, you 'switch' the maize plants off (tell them to vanish) and the field becomes a pure sorghum field (or *vice versa*; same with mixing two different cultivars instead of two species).

What about having the two genomes, maize and sorghum, joined in the same seed. And then, in June, you 'tell' the alloploid maize-sorghum plants to switch off one genome and behave like sorghum-only (or like maize-only; same with two different cultivars of same species).

Mutzel et al., 2019. Doi: 10.1038/s41594-019-0214-1. Molecular switch for the X chromosome. "Scientists elucidate how the inactivation of the X chromosome is initiated ... "

Long-term weather forecast may trigger breeding for (site and) GWAS* weather adaptation New crops? Recurrent Backcrossing Selection is New Stands Multi-omics Marisel Netabolomics Norscriptomics - Genomics - Proteomics - Proteomics Gene editing* M citagonesis * Mapping* gore-switch How to get around training set limite? Environmental Modeling Episted's porential Global Optimums works How Such (100) 9 route to provide How Such (100) 9 route to provide the provide to pro R082,108 Controlled ments NOKIA | ZEISS

Shoepeg grew in Göttingen already in summer 2018, waiting four you ...

Ehssan at Morro Bay and ,Stille Ozean' behind him, in 2006

Delicate Arch, Utah, 2006