C02 - Inverse scattering problems without phase
This project concerns the mathematical theory of, and algorithms for inverse problems in x-ray physics involving measurements of the amplitude, but not the phase of the field. We treat these problems as nonlinear ill-posed operator equations or as non-convex optimization or feasibility problems. In particular, we will study tomographic phase contrast imaging and ptychography, exploiting the special structure of these problems to achieve close to optimal reconstruction within reasonable computation times.  
Members of this project:
Prof. Thorsten Hohage
Prof. Ph.D. Russell Luke
M.Sc. Simon Maretzke
M.Sc. Anna-Lena Martins
Publications:
Maretzke, S. (2018) 
Locality estimates for Fresnel-wave-propagation and stability of x-ray phase contrast imaging with finite detectors 
Inverse Problems, 34: 124004(38pp), DOI:10.1088/1361-6420/aae78f 
Zickert, G. and Maretzke, S. (2018) 
Cryogenic electron tomography reconstructions from phaseless data 
Inverse Problems, 34: 124001, DOI:10.1088/1361-6420/aade22 
Luke, R. D., Thao, N. H. and Tam, M. K. (2018) 
Quantitative Convergence of Iterated Set-Valued Mappings 
Mathematics of Operations Research, Articles in Advance: 1-34, DOI:10.1287/moor.2017.0898 
van Leeuwen, T., Maretzke, S. and J. Batenburg (2018) 
Automatic alignment for three-dimensional tomographic reconstruction 
Inverse Problems, 34(2)
Lauster, F., Luke, D. R. and Tam, M. K. (2017) 
Symbolic Computation with Monotone Operators 
Set Valued and Variational Analysis, DOI:10.1007/s11228-017-0418-7 
Maretzke, S. and Hohage, T. (2017) 
Stability Estimates for Linearized Near-Field Phase Retrieval in X-ray Phase Contrast Imaging 
SIAM J. APPL. MATH, 77(2): 384-408, DOI:10.1137/16M1068170 
Luke, D. R. (2017) 
Phase Retrieval, What`s New? 
SIAG/OPT Views and News, 25(1)
Luke, D. R. (2017) 
Phase Retrieval, What?s New? 
SIAG/OPT Views and News, 25(1)
Charitha, C., Dutta, J. and R.D., L. (2016) 
Lagrange multipliers, (exact) regularization and error bounds for monotone variational inequalities 
Lagrange multipliers, (exact) regularization and error bounds for monotone variational inequalities, DOI:10.1007/s10107-016-1022-6 
König, C., WERNER, F. and Hohage, T. (2016) 
CONVERGENCE RATES FOR EXPONENTIALLY ILL-POSED INVERSE PROBLEMS WITH IMPULSIVE NOISE 
SIAM J. NUMER. ANAL 
Society for Industrial and Applied Mathematics, 54(1): 341?360, DOI:10.1137/15M1022252 
Maretzke S. and Bartels, M., Krenkel, M., Salditt, T. and Hohage, T. (2016)
Regularized Newton methods for x-ray phase contrast and general imaging problems 
OPTICS EXPRESS, 24(6): 6490, DOI:10.1364/OE.24.006490 
Hesse, R., Luke, D., Sabach, S. and Tam, M. (2015) 
Proximal Heterogeneous Block Implicit-Explicit Method and Application to Blind Ptychographic Diffraction Imaging 
SIAM J. on Imaging Science, 8(1): 426-457
Maretzke, S. (2015) 
A uniqueness result for propagation-based phase contrast imaging from a single measurement 
Inverse Problems 31, 31: 065003 (16pp), DOI:10.1088/0266-5611/31/6/065003/meta 
Homann, C., Hohage, T., Hagemann, J., Robisch, A. and Salditt, T. (2015)
Validity of the empty-beam correction in near-field imaging 
Phys. Rev. A, 91: 013821, DOI:10.1103/PhysRevA.91.013821 
Hohage, T. and Le Louer, F. (2015)
A spectrally accurate method for the dielectric obstacle scattering problem and applications to the inverse problem 
num.math.uni-goettingen.deInstitut für Numerische und Angewandte Mathematik,(19)
Homann, C., Hohage, T., Hagemann, J., Robisch, A. and Salditt, T. (2015)
Validity of the empty-beam correction in near-field imaging 
Phys. Rev. A, 91: 013821, DOI:10.1103/PhysRevA.91.013821 
Hagemann, J., Robisch, A. and Luke, D. (2014)
Reconstruction of wave front and object for inline holography from a set of detection planes 
Opt. Express, 22(10): 195-202, DOI:10.1364/OE.22.011552 
Hesse, R., Luke, D. R. and Neumann, P. (2014)
Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility 
IEEE Trans. Signal Process., 62(18): 4868-4881, DOI:10.1109/TSP.2014.2339801 
Hesse, R., Luke, D. R., Sabach, S. and Tam, M. K. (2014)
Proximal Heterogeneous Block Input-Output Method and application to Blind Ptychographic Diffraction Imaging 
arXiv: 1-32
Hohage, T. and Homann, C. (2014)
A Generalization of the Chambolle-Pock Algorithm to Banach Spaces with Applications to Inverse Problems 
arXiv: 1
Hesse, R. and Luke, D. R. (2013)
Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems 
SIAM J. Optim.open access,, 23(4): 2397, DOI:10.1137/120902653 
Hohage, T. and Werner, F. (2012)
Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data 
Numer. Math.open access,, 123(4): 745-779, DOI:10.1007/s00211-012-0499-z 
Kress, R. and Rundell, W. (2013)
Reconstruction of extended sources for the Helmholtz equation 
Inverse Probl., 29(3): 035005, DOI:10.1088/0266-5611/29/3/035005 
Luke, D. R. (2012)
Local linear convergence of approximate projections onto regularized sets 
Nonlinear Anal. Theory, Methods Appl., 75(3): 1531-1546, DOI:10.1016/j.na.2011.08.027 
Hassen, M. F. B., Ivanyshyn, O. and Sini, M. (2010)
Three-dimensional acoustic scattering by complex obstacles: the accuracy issue 
Inverse Problems, 26: 105008, DOI:10.1088/0266-5611/26/10/105008 
Ivanyshyn, O. and Kress, R. (2011)
Inverse scattering for surface impedance from phase-less far field data 
Journal of Computational Physics, 230(9): 3443-3452, DOI:10.1016/j.jcp.2011.01.038 
Ivanyshyn, O. and Kress, R. (2010)
Identification of sound-soft 3D obstacles from phaseless data 
Inverse Problems and Imaging, 4: 131-149, DOI:10.3934/ipi.2010.4.131 
Ivanyshyn, O., Kress, R. and Serranho, P. (2010)
Huygens' principle and iterative methods in inverse obstacle scattering 
Advances in Computational Mathematics, 33: 413-429, DOI:10.1007/s10444-009-9135-6 
Ivanyshyn, O. (2007)
Shape reconstruction of acoustic obstacles from the modulus of the far field pattern 
Inverse Problems and Imaging, 1: 609-622, DOI:10.3934/ipi.2007.1.609